首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We introduce a general class of semiparametric hazard regression models, called extended hazard (EH) models, that are designed to accommodate various survival schemes with time-dependent covariates. The EH model contains both the Cox model and the accelerated failure time (AFT) model as its subclasses so that we can use this nested structure to perform model selection between the Cox model and the AFT model. A class of estimating equations using counting process and martingale techniques is developed to estimate the regression parameters of the proposed model. The performance of the estimating procedure and the impact of model misspecification are assessed through simulation studies. Two data examples, Stanford heart transplant data and Mediterranean fruit flies, egg-laying data, are used to demonstrate the usefulness of the EH model.  相似文献   

2.
In survival analysis, time-dependent covariates are usually present as longitudinal data collected periodically and measured with error. The longitudinal data can be assumed to follow a linear mixed effect model and Cox regression models may be used for modelling of survival events. The hazard rate of survival times depends on the underlying time-dependent covariate measured with error, which may be described by random effects. Most existing methods proposed for such models assume a parametric distribution assumption on the random effects and specify a normally distributed error term for the linear mixed effect model. These assumptions may not be always valid in practice. In this article, we propose a new likelihood method for Cox regression models with error-contaminated time-dependent covariates. The proposed method does not require any parametric distribution assumption on random effects and random errors. Asymptotic properties for parameter estimators are provided. Simulation results show that under certain situations the proposed methods are more efficient than the existing methods.  相似文献   

3.
Multi-state Models in Epidemiology   总被引:1,自引:0,他引:1  
I first discuss the main assumptions which can be made for multi-state models: the time-homogeneity and semi-Markov assumptions, the problem of choice of the time scale, the assumption of homogeneity of the population and also assumptions about the way the observations are incomplete, leading to truncation and censoring. The influence of covariates and different durations and time-dependent variables are synthesized using explanatory processes, and a general additive model for transition intensities presented. Different inference approaches, including penalized likelihood, are considered. Finally three examples of application in epidemiology are presented and some references to other works are given.  相似文献   

4.
In medical studies, it is often of interest to characterize the relationship between a time-to-event and covariates, not only time-independent but also time-dependent. Time-dependent covariates are generally measured intermittently and with error. Recent interests focus on the proportional hazards framework, with longitudinal data jointly modeled through a mixed effects model. However, approaches under this framework depend on the normality assumption of the error, and might encounter intractable numerical difficulties in practice. This motivates us to consider an alternative framework, that is, the additive hazards model, about which little research has been done when time-dependent covariates are measured with error. We propose a simple corrected pseudo-score approach for the regression parameters with no assumptions on the distribution of the random effects and the error beyond those for the variance structure of the latter. The estimator has an explicit form and is shown to be consistent and asymptotically normal. We illustrate the method via simulations and by application to data from an HIV clinical trial.  相似文献   

5.
Asymptotic theory for the Cox semi-Markov illness-death model   总被引:1,自引:1,他引:0  
Irreversible illness-death models are used to model disease processes and in cancer studies to model disease recovery. In most applications, a Markov model is assumed for the multistate model. When there are covariates, a Cox (1972, J Roy Stat Soc Ser B 34:187–220) model is used to model the effect of covariates on each transition intensity. Andersen et al. (2000, Stat Med 19:587–599) proposed a Cox semi-Markov model for this problem. In this paper, we study the large sample theory for that model and provide the asymptotic variances of various probabilities of interest. A Monte Carlo study is conducted to investigate the robustness and efficiency of Markov/Semi-Markov estimators. A real data example from the PROVA (1991, Hepatology 14:1016–1024) trial is used to illustrate the theory.  相似文献   

6.
The Cox proportional hazards (PH) regression model has been widely used to analyze survival data in clinical trials and observational studies. In addition to estimating the main treatment or exposure group effect, it is common to adjust for additional covariates using the Cox model. It is well known that violation of the PH assumption can lead to estimates that are biased and difficult to interpret, and model checking has become a routine procedure. However, such checking might focus on the primary group comparisons, and the assumption can still be violated when adjusting for many of the potential covariates. We study the effect of violation of the PH assumption of the covariates on the estimation of the main group effect in the Cox model. The results are summarized in terms of the bias and the coverage properties of the confidence intervals. Overall in randomized clinical trials, the bias caused by misspecifying the PH assumption on the covariates is no more than 15% in absolute value regardless of sample size. In observational studies where the covariates are likely correlated with the group variable, however, the bias can be very severe. The coverage properties largely depend on sample size, as expected, as bias becomes dominating with increasing sample size. These findings should serve as cautionary notes when adjusting for potential confounders in observational studies, as the violation of PH assumption on the confounders can lead to erroneous results.  相似文献   

7.
Survival studies usually collect on each participant, both duration until some terminal event and repeated measures of a time-dependent covariate. Such a covariate is referred to as an internal time-dependent covariate. Usually, some subjects drop out of the study before occurence of the terminal event of interest. One may then wish to evaluate the relationship between time to dropout and the internal covariate. The Cox model is a standard framework for that purpose. Here, we address this problem in situations where the value of the covariate at dropout is unobserved. We suggest a joint model which combines a first-order Markov model for the longitudinaly measured covariate with a time-dependent Cox model for the dropout process. We consider maximum likelihood estimation in this model and show how estimation can be carried out via the EM-algorithm. We state that the suggested joint model may have applications in the context of longitudinal data with nonignorable dropout. Indeed, it can be viewed as generalizing Diggle and Kenward's model (1994) to situations where dropout may occur at any point in time and may be censored. Hence we apply both models and compare their results on a data set concerning longitudinal measurements among patients in a cancer clinical trial.  相似文献   

8.
Failure time data represent a particular case of binary longitudinal data. The corresponding analysis of the effect of explanatory covariates repeatedly collected over time on the failure rate has been largely facilitated by the Cox semi-parametric regression model. However, neither the interpretation of the estimated parameters associated with time-dependent covariates is straight-forward, nor does this model fully account for the dynamics of the effect of a covariate over time. Markovian regression models appear as complementary tools to address these specific issues from the predictive point of view. We illustrate these aspects using data from the WHO multicenter study, which was designed to analyze the relation between the duration of postpartum lactational amenorrhea and the breastfeeding pattern. One of the main advantage of this approach applied to the field of reproductive epidemiology was to provide a flexible tool, easily and directly understood by clinicians and fieldworkers, for simulating situations, which were still unobserved, and to predict their effects on the duration of amenorrhea.  相似文献   

9.
To allow more accurate prediction of hospital length of stay (LOS) after serious injury or illness, a multi-state model is proposed, in which transitions from the hospitalized state to three possible outcome states (home, long-term care, or death) are assumed to follow constant rates for each of a limited number of time periods. This results in a piecewise exponential (PWE) model for each outcome. Transition rates may be affected by time-varying covariates, which can be estimated from a reference database using standard statistical software and Poisson regression. A PWE model combining the three outcomes allows prediction of LOS. Records of 259,941 injured patients from the US Nationwide Inpatient Sample were used to create such a multi-state PWE model with four time periods. Hospital mortality and LOS for patient subgroups were calculated from this model, and time-varying covariate effects were estimated. Early mortality was increased by anatomic injury severity or penetrating mechanism, but these effects diminished with time; age and male sex remained strong predictors of mortality in all time periods. Rates of discharge home decreased steadily with time, while rates of transfer to long-term care peaked at five days. Predicted and observed LOS and mortality were similar for multiple subgroups. Conceptual background and methods of calculation are discussed and demonstrated. Multi-state PWE models may be useful to describe hospital outcomes, especially when many patients are not discharged home.  相似文献   

10.
Although heterogeneity across individuals may be reduced when a two-state process is extended into a multi-state process, the discrepancy between the observed and the predicted for some states may still exist owing to two possibilities, unobserved mixture distribution in the initial state and the effect of measured covariates on subsequent multi-state disease progression. In the present study, we developed a mixture Markov exponential regression model to take account of the above-mentioned heterogeneity across individuals (subject-to-subject variability) with a systematic model selection based on the likelihood ratio test. The model was successfully demonstrated by an empirical example on surveillance of patients with small hepatocellular carcinoma treated by non-surgical methods. The estimated results suggested that the model with the incorporation of unobserved mixture distribution behaves better than the one without. Complete and partial effects regarding risk factors on different subsequent multi-state transitions were identified using a homogeneous Markov model. The combination of both initial mixture distribution and homogeneous Markov exponential regression model makes a significant contribution to reducing heterogeneity across individuals and over time for disease progression.  相似文献   

11.
In bone marrow transplantation studies, patients are followed over time and a number of events may be observed. These include both ultimate events like death and relapse and transient events like graft versus host disease and graft recovery. Such studies, therefore, lend themselves for using an analytic approach based on multi-state models. We will give a review of such methods with emphasis on regression models for both transition intensities and transition- and state occupation probabilities. Both semi-parametric models, like the Cox regression model, and parametric models based on piecewise constant intensities will be discussed.  相似文献   

12.
Parameter dependency within data sets in simulation studies is common, especially in models such as continuous-time Markov chains (CTMCs). Additionally, the literature lacks a comprehensive examination of estimation performance for the likelihood-based general multi-state CTMC. Among studies attempting to assess the estimation, none have accounted for dependency among parameter estimates. The purpose of this research is twofold: (1) to develop a multivariate approach for assessing accuracy and precision for simulation studies (2) to add to the literature a comprehensive examination of the estimation of a general 3-state CTMC model. Simulation studies are conducted to analyze longitudinal data with a trinomial outcome using a CTMC with and without covariates. Measures of performance including bias, component-wise coverage probabilities, and joint coverage probabilities are calculated. An application is presented using Alzheimer's disease caregiver stress levels. Comparisons of joint and component-wise parameter estimates yield conflicting inferential results in simulations from models with and without covariates. In conclusion, caution should be taken when conducting simulation studies aiming to assess performance and choice of inference should properly reflect the purpose of the simulation.  相似文献   

13.
Prognostic studies are essential to understand the role of particular prognostic factors and, thus, improve prognosis. In most studies, disease progression trajectories of individual patients may end up with one of mutually exclusive endpoints or can involve a sequence of different events.

One challenge in such studies concerns separating the effects of putative prognostic factors on these different endpoints and testing the differences between these effects.

In this article, we systematically evaluate and compare, through simulations, the performance of three alternative multivariable regression approaches in analyzing competing risks and multiple-event longitudinal data. The three approaches are: (1) fitting separate event-specific Cox's proportional hazards models; (2) the extension of Cox's model to competing risks proposed by Lunn and McNeil; and (3) Markov multi-state model.

The simulation design is based on a prognostic study of cancer progression, and several simulated scenarios help investigate different methodological issues relevant to the modeling of multiple-event processes of disease progression. The results highlight some practically important issues. Specifically, the decreased precision of the observed timing of intermediary (non fatal) events has a strong negative impact on the accuracy of regression coefficients estimated with either the Cox's or Lunn-McNeil models, while the Markov model appears to be quite robust, under the same circumstances. Furthermore, the tests based on both Markov and Lunn-McNeil models had similar power for detecting a difference between the effects of the same covariate on the hazards of two mutually exclusive events. The Markov approach yields also accurate Type I error rate and good empirical power for testing the hypothesis that the effect of a prognostic factor on changes after an intermediary event, which cannot be directly tested with the Lunn-McNeil method. Bootstrap-based standard errors improve the coverage rates for Markov model estimates. Overall, the results of our simulations validate Markov multi-state model for a wide range of data structures encountered in prognostic studies of disease progression, and may guide end users regarding the choice of model(s) most appropriate for their specific application.  相似文献   

14.
The focus of this paper is on residual analysis for the lognormal and extreme value or Weibull models, although the proposed methods can be applied to any parametric model. Residuals developed by Barlow and Prentice (1988) for the Cox proportional hazards model are extended to the parametric model setting. Three different residuals are proposed based on this approach with two residuals measuring the impact of survival time and one measuring the impact of the covariates included in the model. In addition, a residual derived from the deviations equality presented in Efron and Johnstone (1990) and the residual proposed by Joergensen (1984) for censored data models are discussed.  相似文献   

15.
ABSTRACT

We study the method for generating pseudo random numbers under various special cases of the Cox model with time-dependent covariates when the baseline hazard function may not be constant and the random variable may equal infinity with a positive probability. During our simulation studies in computing the partial likelihood estimates, in between 3% and 20% of the time with a moderate sample size, it happens that the partial likelihood estimate of the regression coefficient is ∞ for the data from the Cox model. We propose a semi-parametric estimator as a modification for such a case. We present simulation results on the asymptotic properties of the semi-parametric estimator.  相似文献   

16.
In recent decades, marginal structural models have gained popularity for proper adjustment of time-dependent confounders in longitudinal studies through time-dependent weighting. When the marginal model is a Cox model, using current standard statistical software packages was thought to be problematic because they were not developed to compute standard errors in the presence of time-dependent weights. We address this practical modelling issue by extending the standard calculations for Cox models with case weights to time-dependent weights and show that the coxph procedure in R can readily compute asymptotic robust standard errors. Through a simulation study, we show that the robust standard errors are rather conservative, though corresponding confidence intervals have good coverage. A second contribution of this paper is to introduce a Cox score bootstrap procedure to compute the standard errors. We show that this method is efficient and tends to outperform the non-parametric bootstrap in small samples.  相似文献   

17.
18.
We propose correcting for non-compliance in randomized trials by estimating the parameters of a class of semi-parametric failure time models, the rank preserving structural failure time models, using a class of rank estimators. These models are the structural or strong version of the “accelerated failure time model with time-dependent covariates” of Cox and Oakes (1984). In this paper we develop a large sample theory for these estimators, derive the optimal estimator within this class, and briefly consider the construction of “partially adaptive” estimators whose efficiency may approach that of the optimal estimator. We show that in the absence of censoring the optimal estimator attains the semiparametric efficiency bound for the model.  相似文献   

19.
Shi  Yushu  Laud  Purushottam  Neuner  Joan 《Lifetime data analysis》2021,27(1):156-176

In this paper, we first propose a dependent Dirichlet process (DDP) model using a mixture of Weibull models with each mixture component resembling a Cox model for survival data. We then build a Dirichlet process mixture model for competing risks data without regression covariates. Next we extend this model to a DDP model for competing risks regression data by using a multiplicative covariate effect on subdistribution hazards in the mixture components. Though built on proportional hazards (or subdistribution hazards) models, the proposed nonparametric Bayesian regression models do not require the assumption of constant hazard (or subdistribution hazard) ratio. An external time-dependent covariate is also considered in the survival model. After describing the model, we discuss how both cause-specific and subdistribution hazard ratios can be estimated from the same nonparametric Bayesian model for competing risks regression. For use with the regression models proposed, we introduce an omnibus prior that is suitable when little external information is available about covariate effects. Finally we compare the models’ performance with existing methods through simulations. We also illustrate the proposed competing risks regression model with data from a breast cancer study. An R package “DPWeibull” implementing all of the proposed methods is available at CRAN.

  相似文献   

20.
Motivated by a recent tuberculosis (TB) study, this paper is concerned with covariates missing not at random (MNAR) and models the potential intracluster correlation by a frailty. We consider the regression analysis of right‐censored event times from clustered subjects under a Cox proportional hazards frailty model and present the semiparametric maximum likelihood estimator (SPMLE) of the model parameters. An easy‐to‐implement pseudo‐SPMLE is then proposed to accommodate more realistic situations using readily available supplementary information on the missing covariates. Algorithms are provided to compute the estimators and their consistent variance estimators. We demonstrate that both the SPMLE and the pseudo‐SPMLE are consistent and asymptotically normal by the arguments based on the theory of modern empirical processes. The proposed approach is examined numerically via simulation and illustrated with an analysis of the motivating TB study data.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号