首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The authors establish the joint distribution of the sum X and the maximum Y of IID exponential random variables. They derive exact formuli describing the random vector (X, Y), including its joint PDF, CDF, and other characteristics; marginal and conditional distributions; moments and related parameters; and stochastic representations leading to further properties of infinite divisibility and self-decomposability. The authors also discuss parameter estimation and include an example from climatology that illustrates the modeling potential of this new bivariate model.  相似文献   

2.
In this paper, by considering a (3n+1) -dimensional random vector (X0, XT, YT, ZT)T having a multivariate elliptical distribution, we derive the exact joint distribution of (X0, aTX(n), bTY[n], cTZ[n])T, where a, b, c∈?n, X(n)=(X(1), …, X(n))T, X(1)<···<X(n), is the vector of order statistics arising from X, and Y[n]=(Y[1], …, Y[n])T and Z[n]=(Z[1], …, Z[n])T denote the vectors of concomitants corresponding to X(n) ((Y[r], Z[r])T, for r=1, …, n, is the vector of bivariate concomitants corresponding to X(r)). We then present an alternate approach for the derivation of the exact joint distribution of (X0, X(r), Y[r], Z[r])T, for r=1, …, n. We show that these joint distributions can be expressed as mixtures of four-variate unified skew-elliptical distributions and these mixture forms facilitate the prediction of X(r), say, based on the concomitants Y[r] and Z[r]. Finally, we illustrate the usefulness of our results by a real data.  相似文献   

3.
Let X1,…, Xn be mutually independent non-negative integer-valued random variables with probability mass functions fi(x) > 0 for z= 0,1,…. Let E denote the event that {X1X2≥…≥Xn}. This note shows that, conditional on the event E, Xi-Xi+ 1 and Xi+ 1 are independent for all t = 1,…, k if and only if Xi (i= 1,…, k) are geometric random variables, where 1 ≤kn-1. The k geometric distributions can have different parameters θi, i= 1,…, k.  相似文献   

4.
ABSTRACT

In this article, we consider a (k + 1)n-dimensional elliptically contoured random vector (XT1, X2T, …, XTk, ZT)T = (X11, …, X1n, …, Xk1, …, Xkn, Z1, …, Zn)T and derive the distribution of concomitant of multivariate order statistics arising from X1, X2, …, Xk. Specially, we derive a mixture representation for concomitant of bivariate order statistics. The joint distribution of the concomitant of bivariate order statistics is also obtained. Finally, the usefulness of our result is illustrated by a real-life data.  相似文献   

5.
S. Zheng  J. M. Hardin 《Statistics》2013,47(3):361-371
In this paper, we prove that the joint distribution of random vectors Z 1 and Z 2 and the distribution of Z 2 are skew normal provided that Z 1 is skew normally distributed and Z 2 conditioning on Z 1 is distributed as closed skew normal. Also, we extend the main results to the matrix variate case.  相似文献   

6.
In this paper a generalization of the semi-Pareto autoregressive minification process of the first order is given. The necessary and sufficient condition for stationarity of the process is determined. It is shown that the process is ergodic and uniformly mixing. The joint survival function and the joint density function of the random variables X n+h and X n are determined. The extremes of the random variables X 1, X 2, ..., X n and the geometric extremes of random variables X 1, X 2, ..., X N are derived and their asymptotic distributions are discussed. The estimation of the parameters is discussed and some numerical results are given.  相似文献   

7.
Let X1Y1,…, Yn be independent random variables. We characterize the distributions of X and Yj satisfying the equation {X+Y1++Yn}=dX, where {Z} denotes the fractional part of a random variable Z. In the case of full generality, either X is uniformly distributed on [0,1), or Yj has.a shifted lattice distribution and X is shift-invariant. We also give a characterization of shift-invariant distributions. Finally, we consider some special cases of this equation.  相似文献   

8.
We study the r-content Δ of the r -simplex generated by r+ 1 independent random points in R”. Each random point Zj is isotropic and distributed according to λ||Zj||2 ~ beta-type-2(n/2, v), λ, v > 0. We provide an asymptotic normality result which is analogous to the conjecture made by Miles (1971). A method is introduced to work out the exact density of W = (rλ)r(r!Δ)2/(r + |)r+l and hence that of Δ. The distribution of W is also related to some hypothesis-testing problems in multivariate analysis. Furthermore, by using this method, the distribution of W or Δ can easily be simulated.  相似文献   

9.
This article studies the asymptotic properties of the random weighted empirical distribution function of independent random variables. Suppose X1, X2, ???, Xn is a sequence of independent random variables, and this sequence is not required to be identically distributed. Denote the empirical distribution function of the sequence by Fn(x). Based on the random weighting method and Fn(x), the random weighted empirical distribution function Hn(x) is constructed and the asymptotic properties of Hn are discussed. Under weak conditions, the Glivenko–Cantelli theorem and the central limit theorem for the random weighted empirical distribution function are obtained. The obtained results have also been applied to study the distribution functions of random errors of multiple sensors.  相似文献   

10.
11.
Following the paper by Genton and Loperfido [Generalized skew-elliptical distributions and their quadratic forms, Ann. Inst. Statist. Math. 57 (2005), pp. 389–401], we say that Z has a generalized skew-normal distribution, if its probability density function (p.d.f.) is given by f(z)=2φ p (z; ξ, Ω)π (z?ξ), z∈? p , where φ p (·; ξ, Ω) is the p-dimensional normal p.d.f. with location vector ξ and scale matrix Ω, ξ∈? p , Ω>0, and π is a skewing function from ? p to ?, that is 0≤π (z)≤1 and π (?z)=1?π (z), ? z∈? p . First the distribution of linear transformations of Z are studied, and some moments of Z and its quadratic forms are derived. Next we obtain the joint moment-generating functions (m.g.f.’s) of linear and quadratic forms of Z and then investigate conditions for their independence. Finally explicit forms for the above distributions, m.g.f.’s and moments are derived when π (z)=κ (αz), where α∈? p and κ is the normal, Laplace, logistic or uniform distribution function.  相似文献   

12.
13.
Let (X 1, X 2) be a bivariate L p -norm generalized symmetrized Dirichlet (LpGSD) random vector with parameters α12. If p12=2, then (X 1, X 2) is a spherical random vector. The estimation of the conditional distribution of Z u *:=X 2 | X 1>u for u large is of some interest in statistical applications. When (X 1, X 2) is a spherical random vector with associated random radius in the Gumbel max-domain of attraction, the distribution of Z u * can be approximated by a Gaussian distribution. Surprisingly, the same Gaussian approximation holds also for Z u :=X 2| X 1=u. In this paper, we are interested in conditional limit results in terms of convergence of the density functions considering a d-dimensional LpGSD random vector. Stating our results for the bivariate setup, we show that the density function of Z u * and Z u can be approximated by the density function of a Kotz type I LpGSD distribution, provided that the associated random radius has distribution function in the Gumbel max-domain of attraction. Further, we present two applications concerning the asymptotic behaviour of concomitants of order statistics of bivariate Dirichlet samples and the estimation of the conditional quantile function.  相似文献   

14.
A sequence of independent random variables {Zn:n≥ 1} with unknown probability distributions is considered and the problem of estimating their expectations {Mn+1: n≥ 1} is examined. The estimation of Mn+1 is based on a finite set {zk:1≤kn}, each zk being an observed value of Zk, 1 ≤kn, and also based on the assumption that {Mn:n≥ 1} follows an unknown trend of a specified form.  相似文献   

15.
We discuss some problems connected with the role of record values and maximal values generated by sequences of random variables X1, X2,…, X n in the process of the growth of sums X1 +···+ Xn, n = 1, 2,….  相似文献   

16.
ABSTRACT

Concomitants of order statistics are considered for the situation in which the random vectors (X 1, Y 1), (X 2, Y 2),…, (X n , Y n ) are independent but otherwise arbitrarily distributed. The joint and marginal distributions of the concomitants of order statistics and stochastic comparisons among the concomitants of order statistics are studied in this situation.  相似文献   

17.
Let (X, Y) be a bivariate random vector with joint distribution function FX, Y(x, y) = C(F(x), G(y)), where C is a copula and F and G are marginal distributions of X and Y, respectively. Suppose that (Xi, Yi), i = 1, 2, …, n is a random sample from (X, Y) but we are able to observe only the data consisting of those pairs (Xi, Yi) for which Xi ? Yi. We denote such pairs as (X*i, Yi*), i = 1, 2, …, ν, where ν is a random variable. The main problem of interest is to express the distribution function FX, Y(x, y) and marginal distributions F and G with the distribution function of observed random variables X* and Y*. It is shown that if X and Y are exchangeable with marginal distribution function F, then F can be uniquely determined by the distributions of X* and Y*. It is also shown that if X and Y are independent and absolutely continuous, then F and G can be expressed through the distribution functions of X* and Y* and the stress–strength reliability P{X ? Y}. This allows also to estimate P{X ? Y} with the truncated observations (X*i, Yi*). The copula of bivariate random vector (X*, Y*) is also derived.  相似文献   

18.
Consider n independent random variables Zi,…, Zn on R with common distribution function F, whose upper tail belongs to a parametric family F(t) = Fθ(t),t ≥ x0, where θ ∈ ? ? R d. A necessary and sufficient condition for the family Fθ, θ ∈ ?, is established such that the k-th largest order statistic Zn?k+1:n alone constitutes the central sequence yielding local asymptotic normality ( LAN ) of the loglikelihood ratio of the vector (Zn?i+1:n)1 i=kof the k largest order statistics. This is achieved for k = k(n)→n→∞∞ with k/n→n→∞ 0.

In the case of vectors of central order statistics ( Zr:n, Zr+1:n,…, Zs:n ), with r/n and s/n both converging to q ∈ ( 0,1 ), it turns out that under fairly general conditions any order statistic Zm:n with r ≤ m ≤s builds the central sequence in a pertaining LAN expansion.These results lead to asymptotically optimal tests and estimators of the underlying parameter, which depend on single order statistics only  相似文献   

19.
In the context of the general linear model Y=Xβ+ε, the matrix Pz =Z(ZTZ)?1 ZT , where Z=(X: Y), plays an important role in determining least squares results. In this article we propose two graphical displays for the off-diagonal as well as the diagonal elements of PZ . The two graphs are based on simple ideas and are useful in the detection of potentially influential subsets of observations in regression. Since PZ is invariant with respect to permutations of the columns of Z, an added advantage of these graphs is that they can be used to detect outliers in multivariate data where the rows of Z are usually regarded as a random sample from a multivariate population. We also suggest two calibration points, one for the diagonal elements of PZ and the other for the off-diagonal elements. The advantage of these calibration points is that they take into consideration the variability of the off-diagonal as well as the diagonal elements of PZ . They also do not suffer from masking.  相似文献   

20.
Under the traditional assumptions, any entry in ANOVA interpreted to include all Linear model analyses] is equivalent in disiributien to a quadratic form Q=[μ11Z1]2+…+ [μννZν]2]wherein Z1..Zν are independent standard normal variables. Test statisics in ANOVE are distributed as ratio R of two depenbent such quadretic forms. The non-null distribution of R is a mixture of null distributions; the mixing variable is an easy generalitatlon of the Poisson variable. Fast algorithms yield the power function in both fixed and random effects models in AVOVA to user-specified accuracy.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号