首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 265 毫秒
1.
We study methods to estimate regression and variance parameters for over-dispersed and correlated count data from highly stratified surveys. Our application involves counts of fish catches from stratified research surveys and we propose a novel model in fisheries science to address changes in survey protocols. A challenge with this model is the large number of nuisance parameters which leads to computational issues and biased statistical inferences. We use a computationally efficient profile generalized estimating equation method and compare it to marginal maximum likelihood (MLE) and restricted MLE (REML) methods. We use REML to address bias and inaccurate confidence intervals because of many nuisance parameters. The marginal MLE and REML approaches involve intractable integrals and we used a new R package that is designed for estimating complex nonlinear models that may include random effects. We conclude from simulation analyses that the REML method provides more reliable statistical inferences among the three methods we investigated.  相似文献   

2.
ABSTRACT

This paper presents a modified skew-normal (SN) model that contains the normal model as a special case. Unlike the usual SN model, the Fisher information matrix of the proposed model is always non-singular. Despite of this desirable property for the regular asymptotic inference, as with the SN model, in the considered model the divergence of the maximum likelihood estimator (MLE) of the skewness parameter may occur with positive probability in samples with moderate sizes. As a solution to this problem, a modified score function is used for the estimation of the skewness parameter. It is proved that the modified MLE is always finite. The quasi-likelihood approach is considered to build confidence intervals. When the model includes location and scale parameters, the proposed method is combined with the unmodified maximum likelihood estimates of these parameters.  相似文献   

3.
In this paper, we consider the maximum likelihood estimator (MLE) of the scale parameter of the generalized exponential (GE) distribution based on a random censoring model. We assume the censoring distribution also follows a GE distribution. Since the estimator does not provide an explicit solution, we propose a simple method of deriving an explicit estimator by approximating the likelihood function. In order to compare the performance of the estimators, Monte Carlo simulation is conducted. The results show that the MLE and the approximate MLE are almost identical in terms of bias and variance.  相似文献   

4.
In this paper, we propose a new generalized autoregressive conditional heteroskedastic (GARCH) model using infinite normal scale-mixtures which can suitably avoid order selection problems in the application of finite normal scale-mixtures. We discuss its theoretical properties and develop a two-stage algorithm for the maximum likelihood estimator to estimate the mixing distribution non-parametric maximum likelihood estimator (NPMLE) as well as GARCH parameters (two-stage MLE). For the estimation of a mixing distribution, we employ a fast computational algorithm proposed by Wang [On fast computation of the non-parametric maximum likelihood estimate of a mixing distribution. J R Stat Soc Ser B. 2007;69:185–198] under the gradient characterization of the non-parametric mixture likelihood. The GARCH parameters are then estimated either using the expectation-mazimization algorithm or general optimization scheme. In addition, we propose a new forecasting algorithm of value-at-risk (VaR) using the two-stage MLE and the NPMLE. Through a simulation study and real data analysis, we compare the performance of the two-stage MLE with the existing ones including quasi-maximum likelihood estimator based on the standard normal density and the finite normal mixture quasi maximum estimated-likelihood estimator (cf. Lee S, Lee T. Inference for Box–Cox transformed threshold GARCH models with nuisance parameters. Scand J Stat. 2012;39:568–589) in terms of the relative efficiency and accuracy of VaR forecasting.  相似文献   

5.
We derive an identity for nonparametric maximum likelihood estimators (NPMLE) and regularized MLEs in censored data models which expresses the standardized maximum likelihood estimator in terms of the standardized empirical process. This identity provides an effective starting point in proving both consistency and efficiency of NPMLE and regularized MLE. The identity and corresponding method for proving efficiency is illustrated for the NPMLE in the univariate right-censored data model, the regularized MLE in the current status data model and for an implicit NPMLE based on a mixture of right-censored and current status data. Furthermore, a general algorithm for estimation of the limiting variance of the NPMLE is provided. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

6.
A Partial Likelihood Estimator of Vaccine Efficacy   总被引:1,自引:0,他引:1  
A partial likelihood method is proposed for estimating vaccine efficacy for a general epidemic model. In contrast to the maximum likelihood estimator (MLE) which requires complete observation of the epidemic, the suggested method only requires information on the sequence in which individuals are infected and not the exact infection times. A simulation study shows that the method performs almost as well as the MLE. The method is applied to data on the infectious disease mumps.  相似文献   

7.
This paper proposes a semi-parametric modelling and estimating method for analysing censored survival data. The proposed method uses the empirical likelihood function to describe the information in data, and formulates estimating equations to incorporate knowledge of the underlying distribution and regression structure. The method is more flexible than the traditional methods such as the parametric maximum likelihood estimation (MLE), Cox's (1972) proportional hazards model, accelerated life test model, quasi-likelihood (Wedderburn, 1974) and generalized estimating equations (Liang & Zeger, 1986). This paper shows the existence and uniqueness of the proposed semi-parametric maximum likelihood estimates (SMLE) with estimating equations. The method is validated with known cases studied in the literature. Several finite sample simulation and large sample efficiency studies indicate that when the sample size is larger than 100 the SMLE is compatible with the parametric MLE; and in all case studies, the SMLE is about 15% better than the parametric MLE with a mis-specified underlying distribution.  相似文献   

8.
We investigate several estimators of the negative binomial (NB) dispersion parameter for highly stratified count data for which the statistical model has a separate mean parameter for each stratum. If the number of samples per stratum is small then the model is highly parameterized and the maximum likelihood estimator (MLE) of the NB dispersion parameter can be biased and inefficient. Some of the estimators we investigate include adjustments for the number of mean parameters to reduce bias. We extend other estimators that were developed for the iid case, to reduce bias when there are many mean parameters. We demonstrate using simulations that an adjusted double extended quasi-likelihood estimator we proposed gives much improved estimates compared to the MLE. Adjusted extended quasi-likelihood and adjusted maximum likelihood estimators also give much-improved results. We illustrate the various estimators with stratified random bottom trawl survey data for cod (Gadus morhua) off the south coast of Newfoundland, Canada.  相似文献   

9.
Abstract

In the case where strength and stress both follow exponential distributions, this paper considers the maximum likelihood estimator (MLE) of the system reliability based on L ranked set sampling (LRSS). The proposed MLE is shown to have existence, uniqueness and asymptotic normality, and its asymptotic variance is obtained by the Fisher information matrix of LRSS. The values of asymptotic relative efficiencies show that the proposed MLE is always more efficient than the MLE using simple random sampling (SRS). However, the MLE using LRSS cannot be written in closed form. Therefore, the modified MLE is proposed using the technique replaced some terms in the maximum likelihood equations by their expectations. The newly modified MLE using LRSS is shown to be superior to the MLE using SRS. Finally, the proposed method is applied to a real data set on metastatic renal carcinoma study.  相似文献   

10.
This paper deals with the estimation of the parameters of a truncated gamma distribution over (0,τ), where τ is assumed to be a real number. We obtain a necessary and sufficient condition for the existence of the maximum likelihood estimator(MLE). The probability of nonexistence of MLE is observed to be positive. A simulation study indicates that the modified maximum likelihood estimator and the mixed estimator, which exist with probability one,are to be preferred over MLE. The bias, the mean square error, and the probability of nearness form a basis of our simulation study.  相似文献   

11.
It is well known that the normal mixture with unequal variance has unbounded likelihood and thus the corresponding global maximum likelihood estimator (MLE) is undefined. One of the commonly used solutions is to put a constraint on the parameter space so that the likelihood is bounded and then one can run the EM algorithm on this constrained parameter space to find the constrained global MLE. However, choosing the constraint parameter is a difficult issue and in many cases different choices may give different constrained global MLE. In this article, we propose a profile log likelihood method and a graphical way to find the maximum interior mode. Based on our proposed method, we can also see how the constraint parameter, used in the constrained EM algorithm, affects the constrained global MLE. Using two simulation examples and a real data application, we demonstrate the success of our new method in solving the unboundness of the mixture likelihood and locating the maximum interior mode.  相似文献   

12.
Relative risks are often considered preferable to odds ratios for quantifying the association between a predictor and a binary outcome. Relative risk regression is an alternative to logistic regression where the parameters are relative risks rather than odds ratios. It uses a log link binomial generalised linear model, or log‐binomial model, which requires parameter constraints to prevent probabilities from exceeding 1. This leads to numerical problems with standard approaches for finding the maximum likelihood estimate (MLE), such as Fisher scoring, and has motivated various non‐MLE approaches. In this paper we discuss the roles of the MLE and its main competitors for relative risk regression. It is argued that reliable alternatives to Fisher scoring mean that numerical issues are no longer a motivation for non‐MLE methods. Nonetheless, non‐MLE methods may be worthwhile for other reasons and we evaluate this possibility for alternatives within a class of quasi‐likelihood methods. The MLE obtained using a reliable computational method is recommended, but this approach requires bootstrapping when estimates are on the parameter space boundary. If convenience is paramount, then quasi‐likelihood estimation can be a good alternative, although parameter constraints may be violated. Sensitivity to model misspecification and outliers is also discussed along with recommendations and priorities for future research.  相似文献   

13.
Aimed at the puzzle that it is hardly possible to solve maximum likelihood estimate (MLE) of two-dimensional lognormal distribution function directly, the paper presents a novel solution based on extremum equivalent conversion. The puzzle could be transformed to solve the extremum of an equivalent function about independent variable, and then mathematical expression of the extremum was obtained by conventional differential method. Take the study on location in wireless sensor network as an example. The research shows that the method can obviously reduce difficulty of the puzzle and the algorithm complexity, so the presented method provides an effective solution for similar problems.  相似文献   

14.
This paper considers the estimation of “structural” parameters when the number of unknown parameters increases with the sample size. Neyman and Scott (1948) had demonstrated that maximum likelihood estimators (MLE) of structural parameters may be inconsistent in this case. Patefield (1977) further observed that the asymptotic covariance matrix of the MLE is not equal to the inverse of the information matrix. In this paper we establish asymptotic properties of estimators (which include in particular the MLE) obtained via the usual likelihood approach when the incidental parameters are first replaced by their estimates (which are allowed to depend on the structural parameters). Conditions for consistency and asymptotic normality together with a proper formula for the asymptotic covariance matrix are given. The results are illustrated and applied to the problem of estimating linear functional relationships, and mild conditions on the incidental parameters for the MLE (or an adjusted MLE) to be consistent and asymptotically normal are obtained. These conditions are weaker than those imposed by previous authors.  相似文献   

15.
In the parametric regression model, the covariate missing problem under missing at random is considered. It is often desirable to use flexible parametric or semiparametric models for the covariate distribution, which can reduce a potential misspecification problem. Recently, a completely nonparametric approach was developed by [H.Y. Chen, Nonparametric and semiparametric models for missing covariates in parameter regression, J. Amer. Statist. Assoc. 99 (2004), pp. 1176–1189; Z. Zhang and H.E. Rockette, On maximum likelihood estimation in parametric regression with missing covariates, J. Statist. Plann. Inference 47 (2005), pp. 206–223]. Although it does not require a model for the covariate distribution or the missing data mechanism, the proposed method assumes that the covariate distribution is supported only by observed values. Consequently, their estimator is a restricted maximum likelihood estimator (MLE) rather than the global MLE. In this article, we show the restricted semiparametric MLE could be very misleading in some cases. We discuss why this problem occurs and suggest an algorithm to obtain the global MLE. Then, we assess the performance of the proposed method via some simulation experiments.  相似文献   

16.
This paper deals with the estimation of the parameters of doubly truncated and singly truncated normal distributions when truncation points are known. We derive, for these families, a necessary and sufficient condition for the maximum likelihood estimator(MLE) to be finite. Furthermore, the probability of the MLE being infinite is positive. A simulation study for single truncation is carried out to compare the modified maximum likelihood estimator, and the mixed estimator.  相似文献   

17.
This paper synthesizes a global approach to both Bayesian and likelihood treatments of the estimation of the parameters of a hidden Markov model in the cases of normal and Poisson distributions. The first step of this global method is to construct a non-informative prior based on a reparameterization of the model; this prior is to be considered as a penalizing and bounding factor from a likelihood point of view. The second step takes advantage of the special structure of the posterior distribution to build up a simple Gibbs algorithm. The maximum likelihood estimator is then obtained by an iterative procedure replicating the original sample until the corresponding Bayes posterior expectation stabilizes on a local maximum of the original likelihood function.  相似文献   

18.
In this work, we modify finite mixtures of factor analysers to provide a method for simultaneous clustering of subjects and multivariate discrete outcomes. The joint clustering is performed through a suitable reparameterization of the outcome (column)-specific parameters. We develop an expectation–maximization-type algorithm for maximum likelihood parameter estimation where the maximization step is divided into orthogonal sub-blocks that refer to row and column-specific parameters, respectively. Model performance is evaluated via a simulation study with varying sample size, number of outcomes and row/column-specific clustering (partitions). We compare the performance of our model with the performance of standard model-based biclustering approaches. The proposed method is also demonstrated on a benchmark data set where a multivariate binary response is considered.  相似文献   

19.
The maximum likelihood estimator (MLE) and the likelihood ratio test (LRT) will be considered for making inference about the scale parameter of the exponential distribution in case of moving extreme ranked set sampling (MERSS). The MLE and LRT can not be written in closed form. Therefore, a modification of the MLE using the technique suggested by Maharota and Nanda (Biometrika 61:601–606, 1974) will be considered and this modified estimator will be used to modify the LRT to get a test in closed form for testing a simple hypothesis against one sided alternatives. The same idea will be used to modify the most powerful test (MPT) for testing a simple hypothesis versus a simple hypothesis to get a test in closed form for testing a simple hypothesis against one sided alternatives. Then it appears that the modified estimator is a good competitor of the MLE and the modified tests are good competitors of the LRT using MERSS and simple random sampling (SRS).  相似文献   

20.
This paper examines modeling and inference questions for experiments in which different subsets of a set of k possibly dependent components are tested in r different environments. In each environment, the failure times of the set of components on test is assumed to be governed by a particular type of multivariate exponential (MVE) distribution. For any given component tested in several environments, it is assumed that its marginal failure rate varies from one environment to another via a change of scale between the environments, resulting in a joint MVE model which links in a natural way the applicable MVE distributions describing component behavior in each fixed environment. This study thus extends the work of Proschan and Sullo (1976) to multiple environments and the work of Kvam and Samaniego (1993) to dependent data. The problem of estimating model parameters via the method of maximum likelihood is examined in detail. First, necessary and sufficient conditions for the identifiability of model parameters are established. We then treat the derivation of the MLE via a numerically-augmented application of the EM algorithm. The feasibility of the estimation method is demonstrated in an example in which the likelihood ratio test of the hypothesis of equal component failure rates within any given environment is carried out.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号