首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 125 毫秒
1.
Latent variable models are widely used for jointly modeling of mixed data including nominal, ordinal, count and continuous data. In this paper, we consider a latent variable model for jointly modeling relationships between mixed binary, count and continuous variables with some observed covariates. We assume that, given a latent variable, mixed variables of interest are independent and count and continuous variables have Poisson distribution and normal distribution, respectively. As such data may be extracted from different subpopulations, consideration of an unobserved heterogeneity has to be taken into account. A mixture distribution is considered (for the distribution of the latent variable) which accounts the heterogeneity. The generalized EM algorithm which uses the Newton–Raphson algorithm inside the EM algorithm is used to compute the maximum likelihood estimates of parameters. The standard errors of the maximum likelihood estimates are computed by using the supplemented EM algorithm. Analysis of the primary biliary cirrhosis data is presented as an application of the proposed model.  相似文献   

2.
ABSTRACT

Latent variable modeling is commonly used in behavioral, social, and medical science research. The models used in such analysis relate all observed variables to latent common factors. In many applications, the observations are highly non normal or discrete, e.g., polytomous responses or counts. The existing approaches for non normal observations can be considered lacking in several aspects, especially for multi-group samples situations. We propose a generalized linear model approach for multi-sample latent variable analysis that can handle a broad class of non normal and discrete observations, and that furnishes meaningful interpretation and inference in multi-group studies through maximum likelihood analysis. A Monte Carlo EM algorithm is proposed for parameter estimation. The convergence assessment and standard error estimation is addressed. Simulation studies are reported to show the usefulness of the our approach. An example from a substance abuse prevention study is also presented.  相似文献   

3.
The expectation maximization (EM) algorithm is a widely used parameter approach for estimating the parameters of multivariate multinomial mixtures in a latent class model. However, this approach has unsatisfactory computing efficiency. This study proposes a fuzzy clustering algorithm (FCA) based on both the maximum penalized likelihood (MPL) for the latent class model and the modified penalty fuzzy c-means (PFCM) for normal mixtures. Numerical examples confirm that the FCA-MPL algorithm is more efficient (that is, requires fewer iterations) and more computationally effective (measured by the approximate relative ratio of accurate classification) than the EM algorithm.  相似文献   

4.
An objective of Record Linkage is to link two data files by identifying common elements. A popular model for doing the separation is the probabilistic one from Fellegi and Sunter. To estimate the parameters needed for the model usually a mixture model is constructed and the EM algorithm is applied. For simplification, the assumption of conditional independence is often made. This assumption says that if several attributes of elements in the data are compared, then the results of the comparisons regarding the several attributes are independent within the mixture classes. A mixture model constructed with this assumption has been often used. Within this article a straightforward extension of the model is introduced which allows for conditional dependencies but is heavily dependent on the choice of the starting value. Therefore also an estimation procedure for the EM algorithm starting value is proposed. The two models are compared empirically in a simulation study based on telephone book entries. Particularly the effect of different starting values and conditional dependencies on the matching results is investigated.  相似文献   

5.
Latent class models have recently drawn considerable attention among many researchers and practitioners as a class of useful tools for capturing heterogeneity across different segments in a target market or population. In this paper, we consider a latent class logit model with parameter constraints and deal with two important issues in the latent class models--parameter estimation and selection of an appropriate number of classes--within a Bayesian framework. A simple Gibbs sampling algorithm is proposed for sample generation from the posterior distribution of unknown parameters. Using the Gibbs output, we propose a method for determining an appropriate number of the latent classes. A real-world marketing example as an application for market segmentation is provided to illustrate the proposed method.  相似文献   

6.
A simple computational method for estimation of parameters via a type of EM algorithm is proposed in restricted latent class analysis, where equality and constant constraints are considered. These constraints create difficulty in estimation. In order to simply and stably estimate parameters in restricted latent class analysis, a simple computational method using only first-order differentials is proposed, where the step-halving method is adopted. A simulation study shows that in almost all cases the new method gives parameter sequences monotonously increasing the Q-function in the EM algorithm. Analysis of real data is provided.  相似文献   

7.
In this article, we propose an estimation procedure to estimate parameters of joint model when there exists a relationship between cluster size and clustered failure times of subunits within a cluster. We use a joint random effect model of clustered failure times and cluster size. To investigate the possible association, two submodels are connected by a common latent variable. The EM algorithm is applied for the estimation of parameters in the models. Simulation studies are performed to assess the finite sample properties of the estimators. Also, sensitivity tests show the influence of the misspecification of random effect distributions. The methods are applied to a lymphatic filariasis study for adult worm nests.  相似文献   

8.

We propose a semiparametric version of the EM algorithm under the semiparametric mixture model introduced by Anderson (1979, Biometrika , 66 , 17-26). It is shown that the sequence of proposed EM iterates, irrespective of the starting value, converges to the maximum semiparametric likelihood estimator of the vector of parameters in the semiparametric mixture model. The proposed EM algorithm preserves the appealing monotone convergence property of the standard EM algorithm and can be implemented by employing the standard logistic regression program. We present one example to demonstrate the performance of the proposed EM algorithm.  相似文献   

9.
The joint analysis of longitudinal measurements and survival data is useful in clinical trials and other medical studies. In this paper, we consider a joint model which assumes a linear mixed $tt$ model for longitudinal measurements and a promotion time cure model for survival data and links these two models through a latent variable. A semiparametric inference procedure with an EM algorithm implementation is developed for the parameters in the joint model. The proposed procedure is evaluated in a simulation study and applied to analyze the quality of life and time to recurrence data from a clinical trial on women with early breast cancer. The Canadian Journal of Statistics 40: 207–224; 2012 © 2012 Statistical Society of Canada  相似文献   

10.
We propose a latent variable model for informative missingness in longitudinal studies which is an extension of latent dropout class model. In our model, the value of the latent variable is affected by the missingness pattern and it is also used as a covariate in modeling the longitudinal response. So the latent variable links the longitudinal response and the missingness process. In our model, the latent variable is continuous instead of categorical and we assume that it is from a normal distribution. The EM algorithm is used to obtain the estimates of the parameter we are interested in and Gauss–Hermite quadrature is used to approximate the integration of the latent variable. The standard errors of the parameter estimates can be obtained from the bootstrap method or from the inverse of the Fisher information matrix of the final marginal likelihood. Comparisons are made to the mixed model and complete-case analysis in terms of a clinical trial dataset, which is Weight Gain Prevention among Women (WGPW) study. We use the generalized Pearson residuals to assess the fit of the proposed latent variable model.  相似文献   

11.
Motivated by classification issues that arise in marine studies, we propose a latent-class mixture model for the unsupervised classification of incomplete quadrivariate data with two linear and two circular components. The model integrates bivariate circular densities and bivariate skew normal densities to capture the association between toroidal clusters of bivariate circular observations and planar clusters of bivariate linear observations. Maximum-likelihood estimation of the model is facilitated by an expectation maximization (EM) algorithm that treats unknown class membership and missing values as different sources of incomplete information. The model is exploited on hourly observations of wind speed and direction and wave height and direction to identify a number of sea regimes, which represent specific distributional shapes that the data take under environmental latent conditions.  相似文献   

12.
We design a probability distribution for ordinal data by modeling the process generating data, which is assumed to rely only on order comparisons between categories. Contrariwise, most competitors often either forget the order information or add a non-existent distance information. The data generating process is assumed, from optimality arguments, to be a stochastic binary search algorithm in a sorted table. The resulting distribution is natively governed by two meaningful parameters (position and precision) and has very appealing properties: decrease around the mode, shape tuning from uniformity to a Dirac, identifiability. Moreover, it is easily estimated by an EM algorithm since the path in the stochastic binary search algorithm can be considered as missing values. Using then the classical latent class assumption, the previous univariate ordinal model is straightforwardly extended to model-based clustering for multivariate ordinal data. Parameters of this mixture model are estimated by an AECM algorithm. Both simulated and real data sets illustrate the great potential of this model by its ability to parsimoniously identify particularly relevant clusters which were unsuspected by some traditional competitors.  相似文献   

13.
Model-based clustering methods for continuous data are well established and commonly used in a wide range of applications. However, model-based clustering methods for categorical data are less standard. Latent class analysis is a commonly used method for model-based clustering of binary data and/or categorical data, but due to an assumed local independence structure there may not be a correspondence between the estimated latent classes and groups in the population of interest. The mixture of latent trait analyzers model extends latent class analysis by assuming a model for the categorical response variables that depends on both a categorical latent class and a continuous latent trait variable; the discrete latent class accommodates group structure and the continuous latent trait accommodates dependence within these groups. Fitting the mixture of latent trait analyzers model is potentially difficult because the likelihood function involves an integral that cannot be evaluated analytically. We develop a variational approach for fitting the mixture of latent trait models and this provides an efficient model fitting strategy. The mixture of latent trait analyzers model is demonstrated on the analysis of data from the National Long Term Care Survey (NLTCS) and voting in the U.S. Congress. The model is shown to yield intuitive clustering results and it gives a much better fit than either latent class analysis or latent trait analysis alone.  相似文献   

14.
Summary.  Latent class analysis has been used to model measurement error, to identify flawed survey questions and to estimate mode effects. Using data from a survey of University of Maryland alumni together with alumni records, we evaluate this technique to determine its usefulness for detecting bad questions in the survey context. Two sets of latent class analysis models are applied in this evaluation: latent class models with three indicators and latent class models with two indicators under different assumptions about prevalence and error rates. Our results indicated that the latent class analysis approach produced good qualitative results for the latent class models—the item that the model deemed the worst was the worst according to the true scores. However, the approach yielded weaker quantitative estimates of the error rates for a given item.  相似文献   

15.
Summary.  The expectation–maximization (EM) algorithm is a popular tool for maximizing likelihood functions in the presence of missing data. Unfortunately, EM often requires the evaluation of analytically intractable and high dimensional integrals. The Monte Carlo EM (MCEM) algorithm is the natural extension of EM that employs Monte Carlo methods to estimate the relevant integrals. Typically, a very large Monte Carlo sample size is required to estimate these integrals within an acceptable tolerance when the algorithm is near convergence. Even if this sample size were known at the onset of implementation of MCEM, its use throughout all iterations is wasteful, especially when accurate starting values are not available. We propose a data-driven strategy for controlling Monte Carlo resources in MCEM. The algorithm proposed improves on similar existing methods by recovering EM's ascent (i.e. likelihood increasing) property with high probability, being more robust to the effect of user-defined inputs and handling classical Monte Carlo and Markov chain Monte Carlo methods within a common framework. Because of the first of these properties we refer to the algorithm as 'ascent-based MCEM'. We apply ascent-based MCEM to a variety of examples, including one where it is used to accelerate the convergence of deterministic EM dramatically.  相似文献   

16.
Summary.  The reciprocal of serum creatinine concentration, RC, is often used as a biomarker to monitor renal function. It has been observed that RC trajectories remain relatively stable after transplantation until a certain moment, when an irreversible decrease in the RC levels occurs. This decreasing trend commonly precedes failure of a graft. Two subsets of individuals can be distinguished according to their RC trajectories: a subset of individuals having stable RC levels and a subset of individuals who present an irrevocable decrease in their RC levels. To describe such data, the paper proposes a joint latent class model for longitudinal and survival data with two latent classes. RC trajectories within latent class one are modelled by an intercept-only random-effects model and RC trajectories within latent class two are modelled by a segmented random changepoint model. A Bayesian approach is used to fit this joint model to data from patients who had their first kidney transplantation in the Leiden University Medical Center between 1983 and 2002. The resulting model describes the kidney transplantation data very well and provides better predictions of the time to failure than other joint and survival models.  相似文献   

17.
Non ignorable missing data is a common problem in longitudinal studies. Latent class models are attractive for simplifying the modeling of missing data when the data are subject to either a monotone or intermittent missing data pattern. In our study, we propose a new two-latent-class model for categorical data with informative dropouts, dividing the observed data into two latent classes; one class in which the outcomes are deterministic and a second one in which the outcomes can be modeled using logistic regression. In the model, the latent classes connect the longitudinal responses and the missingness process under the assumption of conditional independence. Parameters are estimated by the method of maximum likelihood estimation based on the above assumptions and the tetrachoric correlation between responses within the same subject. We compare the proposed method with the shared parameter model and the weighted GEE model using the areas under the ROC curves in the simulations and the application to the smoking cessation data set. The simulation results indicate that the proposed two-latent-class model performs well under different missing procedures. The application results show that our proposed method is better than the shared parameter model and the weighted GEE model.  相似文献   

18.
Latent variable models have been widely used for modelling the dependence structure of multiple outcomes data. However, the formulation of a latent variable model is often unknown a priori, the misspecification will distort the dependence structure and lead to unreliable model inference. Moreover, multiple outcomes with varying types present enormous analytical challenges. In this paper, we present a class of general latent variable models that can accommodate mixed types of outcomes. We propose a novel selection approach that simultaneously selects latent variables and estimates parameters. We show that the proposed estimator is consistent, asymptotically normal and has the oracle property. The practical utility of the methods is confirmed via simulations as well as an application to the analysis of the World Values Survey, a global research project that explores peoples’ values and beliefs and the social and personal characteristics that might influence them.  相似文献   

19.
《统计学通讯:理论与方法》2012,41(16-17):3079-3093
The paper presents an extension of a new class of multivariate latent growth models (Bianconcini and Cagnone, 2012) to allow for covariate effects on manifest, latent variables and random effects. The new class of models combines: (i) multivariate latent curves that describe the temporal behavior of the responses, and (ii) a factor model that specifies the relationship between manifest and latent variables. Based on the Generalized Linear and Latent Variable Model framework (Bartholomew and Knott, 1999), the response variables are assumed to follow different distributions of the exponential family, with item-specific linear predictors depending on both latent variables and measurement errors. A full maximum likelihood method is used to estimate all the model parameters simultaneously. Data coming from the Data WareHouse of the University of Bologna are used to illustrate the methodology.  相似文献   

20.
In this paper, we propose a hidden Markov model for the analysis of the time series of bivariate circular observations, by assuming that the data are sampled from bivariate circular densities, whose parameters are driven by the evolution of a latent Markov chain. The model segments the data by accounting for redundancies due to correlations along time and across variables. A computationally feasible expectation maximization (EM) algorithm is provided for the maximum likelihood estimation of the model from incomplete data, by treating the missing values and the states of the latent chain as two different sources of incomplete information. Importance-sampling methods facilitate the computation of bootstrap standard errors of the estimates. The methodology is illustrated on a bivariate time series of wind and wave directions and compared with popular segmentation models for bivariate circular data, which ignore correlations across variables and/or along time.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号