首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In this article, we propose a Bayesian approach to estimate the multiple structural change-points in a level and the trend when the number of change-points is unknown. Our formulation of the structural-change model involves a binary discrete variable that indicates the structural change. The determination of the number and the form of structural changes are considered as a model selection issue in Bayesian structural-change analysis. We apply an advanced Monte Carlo algorithm, the stochastic approximation Monte Carlo (SAMC) algorithm, to this structural-change model selection issue. SAMC effectively functions for the complex structural-change model estimation, since it prevents entrapment in local posterior mode. The estimation of the model parameters in each regime is made using the Gibbs sampler after each change-point is detected. The performance of our proposed method has been investigated on simulated and real data sets, a long time series of US real gross domestic product, US uses of force between 1870 and 1994 and 1-year time series of temperature in Seoul, South Korea.  相似文献   

2.
We postulate a dynamic spatio-temporal model with constant covariate effect but with varying spatial effect over time and varying temporal effect across locations. To mitigate the effect of temporary structural change, the model can be estimated using the backfitting algorithm embedded with forward search algorithm and bootstrap. A simulation study is designed to evaluate structural optimality of the model with the estimation procedure. The fitted model exhibit superior predictive ability relative to the linear model. The proposed algorithm also consistently produced lower relative bias and standard errors for the spatial parameter estimates. While additional neighbourhoods do not necessarily improve predictive ability of the model, it trims down relative bias on the parameter estimates, specially for spatial parameter. Location of the temporary structural change along with the degree of structural change contributes to lower relative bias of parameter estimates and in better predictive ability of the model. The estimation procedure is able to produce parameter estimates that are robust to the occurrence of temporary structural change.  相似文献   

3.
Estimation of a general multi-index model comprises determining the number of linear combinations of predictors (structural dimension) that are related to the response, estimating the loadings of each index vector, selecting the active predictors and estimating the underlying link function. These objectives are often achieved sequentially at different stages of the estimation process. In this study, we propose a unified estimation approach under a semi-parametric model framework to attain these estimation goals simultaneously. The proposed estimation method is more efficient and stable than many existing methods where the estimation error in the structural dimension may propagate to the estimation of the index vectors and variable selection stages. A detailed algorithm is provided to implement the proposed method. Comprehensive simulations and a real data analysis illustrate the effectiveness of the proposed method.  相似文献   

4.
We postulate a spatiotemporal multilevel model and estimate using forward search algorithm and MLE imbedded into the backfitting algorithm. Forward search algorithm ensures robustness of the estimates by filtering the effect of temporary structural changes in the estimation of the group-level covariates, the individual-level covariates and spatial parameters. Backfitting algorithm provides computational efficiency of estimation procedure assuming an additive model. Simulation studies show that estimates are robust even in the presence of structural changes induced for example by epidemic outbreak. The model also produced robust estimates even for small sample and short time series common in epidemiological settings.  相似文献   

5.
A spatiotemporal model is postulated and estimated using a procedure that infuses the forward search algorithm and maximum likelihood estimation into the backfitting framework. The forward search algorithm filters the effect of temporary structural change in the estimation of covariate and spatial parameters. Simulation studies illustrate capability of the method in producing robust estimates of the parameters even in the presence of structural change. The method provides good model fit even for small sample sizes in short time series data and good predictions for a wide range of lengths of contamination periods and levels of severity of contamination.  相似文献   

6.
This article develops the adaptive elastic net generalized method of moments (GMM) estimator in large-dimensional models with potentially (locally) invalid moment conditions, where both the number of structural parameters and the number of moment conditions may increase with the sample size. The basic idea is to conduct the standard GMM estimation combined with two penalty terms: the adaptively weighted lasso shrinkage and the quadratic regularization. It is a one-step procedure of valid moment condition selection, nonzero structural parameter selection (i.e., model selection), and consistent estimation of the nonzero parameters. The procedure achieves the standard GMM efficiency bound as if we know the valid moment conditions ex ante, for which the quadratic regularization is important. We also study the tuning parameter choice, with which we show that selection consistency still holds without assuming Gaussianity. We apply the new estimation procedure to dynamic panel data models, where both the time and cross-section dimensions are large. The new estimator is robust to possible serial correlations in the regression error terms.  相似文献   

7.
Motivated by the national evaluation of readmission rates among kidney dialysis facilities in the United States, we evaluate the impact of including discharging hospitals on the estimation of facility-level standardized readmission ratios (SRRs). The estimation of SRRs consists of two steps. First, we model the dependence of readmission events on facilities and patient-level characteristics, with or without an adjustment for discharging hospitals. Second, using results from the models, standardization is achieved by computing the ratio of the number of observed events to the number of expected events assuming a population norm and given the case-mix in that facility. A challenging aspect of our motivating example is that the number of parameters is very large and estimation of high-dimensional parameters is troublesome. To solve this problem, we propose a structured Newton-Raphson algorithm for a logistic fixed effects model and an approximate EM algorithm for the logistic mixed effects model. We consider a re-sampling and simulation technique to obtain p-values for the proposed measures. Finally, our method of identifying outlier facilities involves converting the observed p-values to Z-statistics and using the empirical null distribution, which accounts for overdispersion in the data. The finite-sample properties of proposed measures are examined through simulation studies. The methods developed are applied to national dialysis data. It is our great pleasure to present this paper in honor of Ross Prentice, who has been instrumental in the development of modern methods of modeling and analyzing life history and failure time data, and in the inventive applications of these methods to important national data problem.  相似文献   

8.
This paper develops a new Bayesian approach to change-point modeling that allows the number of change-points in the observed autocorrelated times series to be unknown. The model we develop assumes that the number of change-points have a truncated Poisson distribution. A genetic algorithm is used to estimate a change-point model, which allows for structural changes with autocorrelated errors. We focus considerable attention on the construction of autocorrelated structure for each regime and for the parameters that characterize each regime. Our techniques are found to work well in the simulation with a few change-points. An empirical analysis is provided involving the annual flow of the Nile River and the monthly total energy production in South Korea to lead good estimates for structural change-points.  相似文献   

9.
Bayesian model learning based on a parallel MCMC strategy   总被引:1,自引:0,他引:1  
We introduce a novel Markov chain Monte Carlo algorithm for estimation of posterior probabilities over discrete model spaces. Our learning approach is applicable to families of models for which the marginal likelihood can be analytically calculated, either exactly or approximately, given any fixed structure. It is argued that for certain model neighborhood structures, the ordinary reversible Metropolis-Hastings algorithm does not yield an appropriate solution to the estimation problem. Therefore, we develop an alternative, non-reversible algorithm which can avoid the scaling effect of the neighborhood. To efficiently explore a model space, a finite number of interacting parallel stochastic processes is utilized. Our interaction scheme enables exploration of several local neighborhoods of a model space simultaneously, while it prevents the absorption of any particular process to a relatively inferior state. We illustrate the advantages of our method by an application to a classification model. In particular, we use an extensive bacterial database and compare our results with results obtained by different methods for the same data.  相似文献   

10.
In this article, a structural form of an M-Wright distributed random variable is derived. The mixture representation then led to a random number generation algorithm. A formal parameter estimation procedure is also proposed. This procedure is needed to make the M-Wright function usable in practice. The asymptotic normality of the estimator is established as well. The estimator and the random number generation algorithm are then tested using synthetic data.  相似文献   

11.

This paper is motivated by our collaborative research and the aim is to model clinical assessments of upper limb function after stroke using 3D-position and 4D-orientation movement data. We present a new nonlinear mixed-effects scalar-on-function regression model with a Gaussian process prior focusing on the variable selection from a large number of candidates including both scalar and function variables. A novel variable selection algorithm has been developed, namely functional least angle regression. As it is essential for this algorithm, we studied the representation of functional variables with different methods and the correlation between a scalar and a group of mixed scalar and functional variables. We also propose a new stopping rule for practical use. This algorithm is efficient and accurate for both variable selection and parameter estimation even when the number of functional variables is very large and the variables are correlated. And thus the prediction provided by the algorithm is accurate. Our comprehensive simulation study showed that the method is superior to other existing variable selection methods. When the algorithm was applied to the analysis of the movement data, the use of the nonlinear random-effect model and the function variables significantly improved the prediction accuracy for the clinical assessment.

  相似文献   

12.
We present a scalable Bayesian modelling approach for identifying brain regions that respond to a certain stimulus and use them to classify subjects. More specifically, we deal with multi‐subject electroencephalography (EEG) data with a binary response distinguishing between alcoholic and control groups. The covariates are matrix‐variate with measurements taken from each subject at different locations across multiple time points. EEG data have a complex structure with both spatial and temporal attributes. We use a divide‐and‐conquer strategy and build separate local models, that is, one model at each time point. We employ Bayesian variable selection approaches using a structured continuous spike‐and‐slab prior to identify the locations that respond to a certain stimulus. We incorporate the spatio‐temporal structure through a Kronecker product of the spatial and temporal correlation matrices. We develop a highly scalable estimation algorithm, using likelihood approximation, to deal with large number of parameters in the model. Variable selection is done via clustering of the locations based on their duration of activation. We use scoring rules to evaluate the prediction performance. Simulation studies demonstrate the efficiency of our scalable algorithm in terms of estimation and fast computation. We present results using our scalable approach on a case study of multi‐subject EEG data.  相似文献   

13.
This article considers a time series model with a deterministic trend, in which multiple structural changes are explicitly taken into account, while the number and the location of change-points are unknown. We aim to figure out the best model with the appropriate number of change-points and a certain length of segments between points. We derive a posterior probability and then apply a genetic algorithm (GA) to calculate the posterior probabilities to locate the change-points. GA results in a powerful flexible tool which is shown to search over possible change-points. Numerical results obtained from simulation experiments show excellent empirical properties. To verify our model retrospectively, we estimate structural change-points with US and South Korean GDP data.  相似文献   

14.
15.
ABSTRACT

We propose a new unsupervised learning algorithm to fit regression mixture models with unknown number of components. The developed approach consists in a penalized maximum likelihood estimation carried out by a robust expectation–maximization (EM)-like algorithm. We derive it for polynomial, spline, and B-spline regression mixtures. The proposed learning approach is unsupervised: (i) it simultaneously infers the model parameters and the optimal number of the regression mixture components from the data as the learning proceeds, rather than in a two-fold scheme as in standard model-based clustering using afterward model selection criteria, and (ii) it does not require accurate initialization unlike the standard EM for regression mixtures. The developed approach is applied to curve clustering problems. Numerical experiments on simulated and real data show that the proposed algorithm performs well and provides accurate clustering results, and confirm its benefit for practical applications.  相似文献   

16.
In this paper we introduce a binary search algorithm that efficiently finds initial maximum likelihood estimates for sequential experiments where a binary response is modeled by a continuous factor. The problem is motivated by switching measurements on superconducting Josephson junctions. In this quantum mechanical experiment, the current is the factor controlled by the experimenter and a binary response indicating the presence or the absence of a voltage response is measured. The prior knowledge on the model parameters is typically poor, which may cause the common approaches of initial estimation to fail. The binary search algorithm is designed to work reliably even when the prior information is very poor. The properties of the algorithm are studied in simulations and an advantage over the initial estimation with equally spaced factor levels is demonstrated. We also study the cost-efficiency of the binary search algorithm and find the approximately optimal number of measurements per stage when there is a cost related to the number of stages in the experiment.  相似文献   

17.
Finite mixture models have provided a reasonable tool to model various types of observed phenomena, specially those which are random in nature. In this article, a finite mixture of Weibull and Pareto (IV) distribution is considered and studied. Some structural properties of the resulting model are discussed including estimation of the model parameters via expectation maximization (EM) algorithm. A real-life data application exhibits the fact that in certain situations, this mixture model might be a better alternative than the rival popular models.  相似文献   

18.
We present a maximum likelihood estimation procedure for the multivariate frailty model. The estimation is based on a Monte Carlo EM algorithm. The expectation step is approximated by averaging over random samples drawn from the posterior distribution of the frailties using rejection sampling. The maximization step reduces to a standard partial likelihood maximization. We also propose a simple rule based on the relative change in the parameter estimates to decide on sample size in each iteration and a stopping time for the algorithm. An important new concept is acquiring absolute convergence of the algorithm through sample size determination and an efficient sampling technique. The method is illustrated using a rat carcinogenesis dataset and data on vase lifetimes of cut roses. The estimation results are compared with approximate inference based on penalized partial likelihood using these two examples. Unlike the penalized partial likelihood estimation, the proposed full maximum likelihood estimation method accounts for all the uncertainty while estimating standard errors for the parameters.  相似文献   

19.
A new variational Bayesian (VB) algorithm, split and eliminate VB (SEVB), for modeling data via a Gaussian mixture model (GMM) is developed. This new algorithm makes use of component splitting in a way that is more appropriate for analyzing a large number of highly heterogeneous spiky spatial patterns with weak prior information than existing VB-based approaches. SEVB is a highly computationally efficient approach to Bayesian inference and like any VB-based algorithm it can perform model selection and parameter value estimation simultaneously. A significant feature of our algorithm is that the fitted number of components is not limited by the initial proposal giving increased modeling flexibility. We introduce two types of split operation in addition to proposing a new goodness-of-fit measure for evaluating mixture models. We evaluate their usefulness through empirical studies. In addition, we illustrate the utility of our new approach in an application on modeling human mobility patterns. This application involves large volumes of highly heterogeneous spiky data; it is difficult to model this type of data well using the standard VB approach as it is too restrictive and lacking in the flexibility required. Empirical results suggest that our algorithm has also improved upon the goodness-of-fit that would have been achieved using the standard VB method, and that it is also more robust to various initialization settings.  相似文献   

20.
We propose a robust estimation procedure for the analysis of longitudinal data including a hidden process to account for unobserved heterogeneity between subjects in a dynamic fashion. We show how to perform estimation by an expectation–maximization-type algorithm in the hidden Markov regression literature. We show that the proposed robust approaches work comparably to the maximum-likelihood estimator when there are no outliers and the error is normal and outperform it when there are outliers or the error is heavy tailed. A real data application is used to illustrate our proposal. We also provide details on a simple criterion to choose the number of hidden states.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号