首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Cumulative count of conforming control chart is usually used to monitor fraction nonconforming in high-yield processes. In this article, we propose m-of-m control chart based on cumulative count of conforming units for high-yield processes. The steady-state properties of the m-of-m control chart are investigated. We compare performance of the m-of-m control chart with control chart based on cumulative count of conforming units. We present Markov chain model of the m-of-m control chart to evaluate average run length, standard deviation of run length and quartiles.  相似文献   

2.
Normally, an average run length (ARL) is used as a measure for evaluating the detecting performance of a multivariate control chart. This has a direct impact on the false alarm cost in Phase II. In this article, we first conduct a simulation study to calculate both in-control and out-of-control ARLs under various combinations of process shifts and number of samples. Then, a trade-off analysis between sampling inspection and false alarm costs is performed. Both the simulation results and trade-off analysis suggest that the optimal number of samples for constructing a multivariate control chart in Phase I can be determined.  相似文献   

3.
A synthetic mean square error (MSE) control chart is presented in this study for monitoring the changes in the mean and standard deviation of a normally distributed process. The synthetic MSE control chart is a combination of the standard MSE control chart and the conforming run length (CRL) control chart. From the numerical comparisons, the synthetic MSE control chart is always more efficient than the standard MSE control chart in detecting shifts in the process mean and standard deviation. The synthetic MSE chart also performs better than the exponentially weighted moving average-semicircle (EWMA-SC) chart, except for some cases where the process mean shifts are small.  相似文献   

4.
Phase I of control analysis requires large amount of data to fit a distribution and estimate the corresponding parameters of the process under study. However, when only individual observations are available, and no a priori knowledge exists, the presence of outliers can bias the analysis. A relatively recent and successful approach to address this situation is Tukey's Control Chart (TCC), a charting method that applies the Box Plot technique to estimate the control limits. This procedure has proven to be effective for symmetric distributions. However, when skewness is present the average run length performance diminishes significantly. This article proposes a modified version of TCC to consider skewness with minimum assumptions on the underlying distribution of observations. Using theoretical results and Monte Carlo simulation, the modified TCC is tested over several distributions proving a better representation of skewed populations, even in cases when only a limited number of observations are available.  相似文献   

5.
In this article, we provide a nonparametric Shewhart-type synthetic control chart based on the signed-rank statistic to monitor shifts in the known in-control process median. The synthetic control chart is a combination of a signed-rank chart due to Bakir (2004 Bakir , S. T. ( 2004 ). A distribution-free Shewhart quality control chart based on signed-ranks . Quality Engineering 16 : 613623 .[Taylor & Francis Online] [Google Scholar]) and a conforming run length chart due to Bourke (1991 Bourke , P. D. ( 1991 ). Detecting a shift in fraction nonconforming using run-length control charts with 100% inspection . Journal of Quality Technology 23 : 225238 .[Taylor & Francis Online], [Web of Science ®] [Google Scholar]). The operation and design of the chart are discussed and the performance of the chart has been studied. The chart has an attractive average run length behavior as compared to the parametric control chart for a class of symmetric continuous process distributions. The proposed chart performs better than the nonparametric signed-rank chart given by Bakir (2004 Bakir , S. T. ( 2004 ). A distribution-free Shewhart quality control chart based on signed-ranks . Quality Engineering 16 : 613623 .[Taylor & Francis Online] [Google Scholar]) and Chakraborti and Eryilmaz (2007 Chakraborti , S. , Eryilmaz , S. (2007). A nonparametric Shewhart-type signed-rank control chart based on runs. Communications in Statistics—Simulation and Computation 36:335356.[Taylor & Francis Online], [Web of Science ®] [Google Scholar]).  相似文献   

6.
In this article, we extend a single exponentially weighted moving average semicircle (EWMA-SC) chart to a single generally weighted moving average (GWMA) chart. This new control chart can effectively combine the features of the SC chart with GWMA techniques, and can easily indicate the source and direction of a change. We perform simulations to evaluate the average run length, standard deviation of the run length, and diagnostic abilities of the GWMA-SC and EWMA-SC charts. An extensive comparison shows that the GWMA-SC control chart is more sensitive than the EWMA-SC chart for detecting small shifts in the process mean and/or variability.  相似文献   

7.
In this study, a control chart is constructed to monitor multivariate Poisson count data, called the MP chart. The control limits of the MP chart are developed by an exact probability method based on the sum of defects or non conformities for each quality characteristic. Numerical examples are used to illustrate the MP chart. The MP chart is evaluated by the average run length (ARL) in simulation. The result indicates that the MP chart is more appropriate than the Shewhart-type control chart when the correlation between variables exists.  相似文献   

8.
A multivariate synthetic exponentially weighted moving average (MSEWMA) control chart is presented in this study. The MSEWMA control chart consists of a multivariate exponentially weighted moving average (MEWMA) control chart and a conforming run length control chart. The average run length of the MSEWMA control chart is obtained using a Markov chain approach. From the numerical comparisons, it is shown that the MSEWMA control chart is more efficient than the multivariate synthetic T 2 control chart and the MEWMA control chart for detecting shifts in the process mean vector.  相似文献   

9.
The double exponentially weighted moving average (DEWMA) technique has been investigated in recent years for detecting shifts in the process mean and has been shown to be more efficient than the corresponding exponentially weighted moving average (EWMA) technique. In this article, we extend the DEWMA technique of performing exponential smoothing twice to the double moving average (DMA) technique by computing the moving average twice. Using simulation, we show that our proposed DMA chart improves upon the ARL performance of the moving average (MA) chart in detecting mean shifts of small to moderate magnitudes. It is also shown through simulation that, generally, the DMA charts with spans, w = 10 and 15 provide comparable average run length (ARL) performances to the EWMA and cumulative sum (CUSUM) charts, designed for detecting small shifts.  相似文献   

10.
Standard multivariate control charts usually employ fixed sample sizes at equal sampling intervals to monitor a process. In this study, a multivariate exponential weighted moving average (MEWMA) chart with adaptive sample sizes is investigated. Performance measure of the adaptive-sample-size MEWMA chart is obtained through a Markov chain approach. The performance of the adaptive-sample-size MEWMA chart is compared with the fixed-sample-size control chart in terms of steady-state average run length for different magnitude of shifts in the process mean. It is shown that the adaptive-sample-size chart is more efficient than the fixed-sample-size MEWMA control chart in detecting shifts in the process mean.  相似文献   

11.
This article presents a synthetic control chart for detection of shifts in the process median. The synthetic chart is a combination of sign chart and conforming run-length chart. The performance evaluation of the proposed chart indicates that the synthetic chart has a higher power of detecting shifts in process median than the Shewhart charts based on sign statistic as well as the classical Shewhart X-bar chart for various symmetric distributions. The improvement is significant for shifts of moderate to large shifts in the median. The robustness studies of the proposed synthetic control chart against outliers indicate that the proposed synthetic control chart is robust against contamination by outliers.  相似文献   

12.
ABSTRACT

Runs rules are usually used with Shewhart-type charts to enhance the charts' sensitivities toward small and moderate shifts. Abbas et al. in 2011 took it a step further by proposing two runs rules schemes, applied to the exponentially weighted moving average (EWMA) chart and evaluated their average run length (ARL) performances using simulation. They showed that the proposed schemes are superior to the classical EWMA chart and other schemes being investigated. Besides pointing out some erroneous ARL and standard deviation of the run length (SDRL) computations in Abbas et al., this paper presents a Markov chain approach for computing the ARL, percentiles of the run length (RL) distribution and SDRL, for the two runs rules schemes of Abbas et al. Using Markov chain, we also propose two combined runs rules EWMA schemes to quicken the two schemes of Abbas et al. in responding to large shifts. The runs rules (basic and combined rules) EWMA schemes will be compared with some existing control charting methods, where the former charts are shown to prevail.  相似文献   

13.
Control charts designed for the properties of non conformities, also called p control charts, are powerful tools used for monitoring a performance of the fraction of non conforming units. Constructing a p chart is often based on the assumption that the in-control proportion of non conforming items (p 0) is known. In practice, the value of p 0 is rarely known and is frequently replaced by an estimate from an in-control reference sample in Phase I. This article investigates the effects of sample sizes in both Phase I and Phase II on the performance of p control charts. The conditional and marginal run length distributions are derived and the corresponding numerical studies are conducted. Moreover, the minimal sample sizes required in Phases I and II to ensure adequate statistical performance are proposed when p 0 = 0.1 and 0.005.  相似文献   

14.
A Tukey's control chart was designed to monitor single observation data. Its easy control-limits setting and simple statistical concept are the most important advantages. In this study, we setup the Tukey's control chart based on known probability distribution and construct its average run length calculator. ARL performance of the Tukey's control chart is evaluated under a normal distribution and non normal distributions, respectively. The comparison of ARL performance reveals that Tukey's control chart is not sensitive to shift detection when the process heavily violates the normal assumption. The number of observations needed for Tukey's control chart setup is less than Shewhart's control chart. Tukey's control chart is a better choice for the process mean monitoring.  相似文献   

15.
In batch processing, the Three-Way control chart has been offered for controlling the mean of a process when the batch-to-batch variation is much greater than the within-batch variation. These two sources of variation are typically monitored along with usual batch sample means. Although the Three-Way chart was originally developed for normally distributed process data, its robustness to violations of the normality assumption is the central theme of this study. For data streams with heavy tails or displaying skewness, the in-control average run lengths (ARLs) for the Three-Way chart are seen to be significantly shorter than expected. On the other hand, out-of-control ARLs are much longer than the normal theory benchmarks for symmetric non-normal distributions. The Three-Way chart is not robust to moderate or strong skewness.  相似文献   

16.
Control charts are effective tools for signal detection in both manufacturing processes and service processes. Much service data come from a process with variables having nonnormal or unknown distributions. The commonly used Shewhart variable control charts, which depend heavily on the normality assumption, should not be properly used here. In this article, we propose an improved asymmetric EWMA mean chart based on a simple statistic to monitor process mean shift. We explored the sampling properties of the new monitoring statistic and calculated the average run lengths of the proposed asymmetric EWMA mean chart. We recommend the proposed improved asymmetric EWMA mean chart because the average run lengths of the modified charts are more accurate and reasonable than those of the five existed mean charts. A numerical example of service times with a right skewed distribution from a service system of a bank branch is used to illustrate the application of the improved asymmetric EWMA mean chart and to compare it with the five existing mean charts. The proposed chart showed better detection performance than those of the five existing mean charts in monitoring and detecting shifts in the process mean.  相似文献   

17.
This article is concerned with the effect of the methods for handling missing values in multivariate control charts. We discuss the complete case, mean substitution, regression, stochastic regression, and the expectation–maximization algorithm methods for handling missing values. Estimates of mean vector and variance–covariance matrix from the treated data set are used to build the multivariate exponentially weighted moving average (MEWMA) control chart. Based on a Monte Carlo simulation study, the performance of each of the five methods is investigated in terms of its ability to obtain the nominal in-control and out-of-control average run length (ARL). We consider three sample sizes, five levels of the percentage of missing values, and three types of variable numbers. Our simulation results show that imputation methods produce better performance than case deletion methods. The regression-based imputation methods have the best overall performance among all the competing methods.  相似文献   

18.
19.
A generally weighted moving average (GWMA) control chart for monitoring Poisson observations is introduced. Using simulation, its average run lengths and standard deviations of run lengths are compared with those of other control charts for Poisson data. It is shown that the Poisson GWMA chart outperforms other control charts, especially when the process shift is small.  相似文献   

20.
Statistical design is applied to a multivariate exponentially weighted moving average (MEWMA) control chart. The chart parameters are control limit H and smoothing constant r. The choices of the parameters depend on the number of variables p and the size of the process mean shift δ. The MEWMA statistic is modeled as a Markov chain and the Markov chain approach is used to determine the properties of the chart. Although average run length has become a traditional measure of the performance of control schemes, some authors have suggested other measures, such as median and other percentiles of the run length distribution to explain run length properties of a control scheme. This will allow a thorough study of the performance of the control scheme. Consequently, conclusions based on these measures would provide a better and comprehensive understanding of a scheme. In this article, we present the performance of the MEWMA control chart as measured by the average run length and median run length. Graphs are given so that the chart parameters of an optimal MEWMA chart can be determined easily.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号