首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到5条相似文献,搜索用时 0 毫秒
1.
Two types of confidence intervals (CIs) and confidence bands (CBs) for the receiver operating characteristic (ROC) curve are studied: pointwise CIs and simultaneous CBs. An optimized version of the pointwise CI with the shortest width is developed. A new ellipse-envelope simultaneous CB for the ROC curve is suggested as an adaptation of the Working-Hotelling-type CB implemented in a paper by Ma and Hall (1993). Statistical simulations show that our ellipse-envelope CB covers the true ROC curve with a probability close to nominal while the coverage probability of the Ma and Hall CB is significantly smaller. Simulations also show that our CI for the area under the ROC curve is close to nominal while the coverage probability of the CI suggested by Hanley and McNail (1982) uniformly overestimates the nominal value. Two examples illustrate our simultaneous ROC bands: radiation dose estimation from time to vomiting and discrimination of breast cancer from benign abnormalities using electrical impedance measurements.  相似文献   

2.
The power-law process is widely used in the analysis of repairable system reliability. In this article, interval estimation for the scale parameter is investigated under some general conditions. A procedure to derive a generalized confidence interval for the scale parameter is presented. We also study the accuracy of the generalized confidence interval by Monte Carlo simulation. Finally, two examples are shown to illustrate the proposed procedure.  相似文献   

3.
Non-inferiority tests are often measured for the diagnostic accuracy in medical research. The area under the receiver operating characteristic (ROC) curve is a familiar diagnostic measure for the overall diagnostic accuracy. Nevertheless, since it may not differentiate the diverse shapes of the ROC curves with different diagnostic significance, the partial area under the ROC (PAUROC) curve, another summary measure emerges for such diagnostic processes that require the false-positive rate to be in the clinically interested range. Traditionally, to estimate the PAUROC, the golden standard (GS) test on the true disease status is required. Nevertheless, the GS test may sometimes be infeasible. Besides, in a lot of research fields such as the epidemiology field, the true disease status of the patients may not be known or available. Under the normality assumption on diagnostic test results, based on the expectation-maximization algorithm in combination with the bootstrap method, we propose the heuristic method to construct a non-inferiority test for the difference in the paired PAUROCs without the GS test. Through the simulation study, although the proposed method might provide a liberal test, as a whole, the empirical size of the proposed method sufficiently controls the size at the significance level, and the empirical power of the proposed method in the absence of the GS is as good as that of the non-inferiority in the presence of the GS. The proposed method is illustrated with the published data.  相似文献   

4.
In this article, we investigated the bootstrap calibrated generalized confidence limits for process capability indices C pk for the one-way random effect model. Also, we derived Bissell's approximation formula for the lower confidence limit using Satterthwaite's method and calculated its coverage probabilities and expected values. Then we compared it with standard bootstrap (SB) method and generalized confidence interval method. The simulation results indicate that the confidence limit obtained offers satisfactory coverage probabilities. The proposed method is illustrated with the help of simulation studies and data sets.  相似文献   

5.
We derive Bayesian interval estimators for the differences in the true positive rates and false positive rates of two dichotomous diagnostic tests applied to the members of two distinct populations. The populations have varying disease prevalences with unverified negatives. We compare the performance of the Bayesian credible interval to the Wald interval using Monte Carlo simulation for a spectrum of different TPRs, FPRs, and sample sizes. For the case of a low TPR and low FPR, we found that a Bayesian credible interval with relatively noninformative priors performed well. We obtain similar interval comparison results for the cases of a high TPR and high FPR, a high TPR and low FPR, and of a high TPR and mixed FPR after incorporating mildly informative priors.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号