首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The label-switching problem is one of the fundamental problems in Bayesian mixture analysis. Using all the Markov chain Monte Carlo samples as the initials for the expectation-maximization (EM) algorithm, we propose to label the samples based on the modes they converge to. Our method is based on the assumption that the samples converged to the same mode have the same labels. If a relative noninformative prior is used or the sample size is large, the posterior will be close to the likelihood and then the posterior modes can be located approximately by the EM algorithm for mixture likelihood, without assuming the availability of the closed form of the posterior. In order to speed up the computation of this labeling method, we also propose to first cluster the samples by K-means with a large number of clusters K. Then, by assuming that the samples within each cluster have the same labels, we only need to find one converged mode for each cluster. Using a Monte Carlo simulation study and a real dataset, we demonstrate the success of our new method in dealing with the label-switching problem.  相似文献   

2.
Solving label switching is crucial for interpreting the results of fitting Bayesian mixture models. The label switching originates from the invariance of posterior distribution to permutation of component labels. As a result, the component labels in Markov chain simulation may switch to another equivalent permutation, and the marginal posterior distribution associated with all labels may be similar and useless for inferring quantities relating to each individual component. In this article, we propose a new simple labelling method by minimizing the deviance of the class probabilities to a fixed reference labels. The reference labels can be chosen before running Markov chain Monte Carlo (MCMC) using optimization methods, such as expectation-maximization algorithms, and therefore the new labelling method can be implemented by an online algorithm, which can reduce the storage requirements and save much computation time. Using the Acid data set and Galaxy data set, we demonstrate the success of the proposed labelling method for removing the labelling switching in the raw MCMC samples.  相似文献   

3.
A new Markov chain Monte Carlo method for the Bayesian analysis of finite mixture distributions with an unknown number of components is presented. The sampler is characterized by a state space consisting only of the number of components and the latent allocation variables. Its main advantage is that it can be used, with minimal changes, for mixtures of components from any parametric family, under the assumption that the component parameters can be integrated out of the model analytically. Artificial and real data sets are used to illustrate the method and mixtures of univariate and of multivariate normals are explicitly considered. The problem of label switching, when parameter inference is of interest, is addressed in a post-processing stage.  相似文献   

4.
Studies of the behaviors of glaciers, ice sheets, and ice streams rely heavily on both observations and physical models. Data acquired via remote sensing provide critical information on geometry and movement of ice over large sections of Antarctica and Greenland. However, uncertainties are present in both the observations and the models. Hence, there is a need for combining these information sources in a fashion that incorporates uncertainty and quantifies its impact on conclusions. We present a hierarchical Bayesian approach to modeling ice-stream velocities incorporating physical models and observations regarding velocity, ice thickness, and surface elevation from the North East Ice Stream in Greenland. The Bayesian model leads to interesting issues in model assessment and computation.  相似文献   

5.
The fused lasso penalizes a loss function by the L1 norm for both the regression coefficients and their successive differences to encourage sparsity of both. In this paper, we propose a Bayesian generalized fused lasso modeling based on a normal-exponential-gamma (NEG) prior distribution. The NEG prior is assumed into the difference of successive regression coefficients. The proposed method enables us to construct a more versatile sparse model than the ordinary fused lasso using a flexible regularization term. Simulation studies and real data analyses show that the proposed method has superior performance to the ordinary fused lasso.  相似文献   

6.
We consider several alternatives to the continuous exponential-Poisson distribution in order to accommodate the occurrence of zeros. Three of these are modifications of the exponential-Poisson model. One of these remains a fully continuous model. The other models we consider are all semi-continuous models, each with a discrete point mass at zero and a continuous density on the positive values. All of the models are applied to two environmental data sets concerning precipitation, and their Bayesian analyses using MCMC are discussed. This discussion covers convergence of the MCMC simulations and model selection procedures and considerations.  相似文献   

7.
In this article, we propose to evaluate and compare Markov chain Monte Carlo (MCMC) methods to estimate the parameters in a generalized extreme value model. We employed the Bayesian approach using traditional Metropolis-Hastings methods, Hamiltonian Monte Carlo (HMC), and Riemann manifold HMC (RMHMC) methods to obtain the approximations to the posterior marginal distributions of interest. Applications to real datasets and simulation studies provide evidence that the extra analytical work involved in Hamiltonian Monte Carlo algorithms is compensated by a more efficient exploration of the parameter space.  相似文献   

8.
When MCMC methods for Bayesian spatiotemporal modeling are applied to large geostatistical problems, challenges arise as a consequence of memory requirements, computing costs, and convergence monitoring. This article describes the parallelization of a reparametrized and marginalized posterior sampling (RAMPS) algorithm, which is carefully designed to generate posterior samples efficiently. The algorithm is implemented using the Parallel Linear Algebra Package (PLAPACK). The scalability of the algorithm is investigated via simulation experiments that are implemented using a cluster with 25 processors. The usefulness of the method is illustrated with an application to sulfur dioxide concentration data from the Air Quality System database of the U.S. Environmental Protection Agency.  相似文献   

9.
In most practical applications, the quality of count data is often compromised due to errors-in-variables (EIVs). In this paper, we apply Bayesian approach to reduce bias in estimating the parameters of count data regression models that have mismeasured independent variables. Furthermore, the exposure model is misspecified with a flexible distribution, hence our approach remains robust against any departures from normality in its true underlying exposure distribution. The proposed method is also useful in realistic situations as the variance of EIVs is estimated instead of assumed as known, in contrast with other methods of correcting bias especially in count data EIVs regression models. We conduct simulation studies on synthetic data sets using Markov chain Monte Carlo simulation techniques to investigate the performance of our approach. Our findings show that the flexible Bayesian approach is able to estimate the values of the true regression parameters consistently and accurately.  相似文献   

10.
Hierarchical models enable the encoding of a variety of parametric structures. However, when presented with a large number of covariates upon which some component of a model hierarchy depends, the modeller may be unwilling or unable to specify a form for that dependence. Data-mining methods are designed to automatically discover relationships between many covariates and a response surface, easily accommodating non-linearities and higher-order interactions. We present a method of wrapping hierarchical models around data-mining methods, preserving the best qualities of the two paradigms. We fit the resulting semi-parametric models using an approximate Gibbs sampler called HEBBRU. Using a simulated dataset, we show that HEBBRU is useful for exploratory analysis and displays excellent predictive accuracy. Finally, we apply HEBBRU to an ornithological dataset drawn from the eBird database.  相似文献   

11.
Bayesian model learning based on a parallel MCMC strategy   总被引:1,自引:0,他引:1  
We introduce a novel Markov chain Monte Carlo algorithm for estimation of posterior probabilities over discrete model spaces. Our learning approach is applicable to families of models for which the marginal likelihood can be analytically calculated, either exactly or approximately, given any fixed structure. It is argued that for certain model neighborhood structures, the ordinary reversible Metropolis-Hastings algorithm does not yield an appropriate solution to the estimation problem. Therefore, we develop an alternative, non-reversible algorithm which can avoid the scaling effect of the neighborhood. To efficiently explore a model space, a finite number of interacting parallel stochastic processes is utilized. Our interaction scheme enables exploration of several local neighborhoods of a model space simultaneously, while it prevents the absorption of any particular process to a relatively inferior state. We illustrate the advantages of our method by an application to a classification model. In particular, we use an extensive bacterial database and compare our results with results obtained by different methods for the same data.  相似文献   

12.
We propose a Bayesian stochastic search approach to selecting restrictions on multivariate regression models where the errors exhibit deterministic or stochastic conditional volatilities. We develop a Markov chain Monte Carlo (MCMC) algorithm that generates posterior restrictions on the regression coefficients and Cholesky decompositions of the covariance matrix of the errors. Numerical simulations with artificially generated data show that the proposed method is effective in selecting the data-generating model restrictions and improving the forecasting performance of the model. Applying the method to daily foreign exchange rate data, we conduct stochastic search on a VAR model with stochastic conditional volatilities.  相似文献   

13.
Methods for choosing a fixed set of knot locations in additive spline models are fairly well established in the statistical literature. The curse of dimensionality makes it nontrivial to extend these methods to nonadditive surface models, especially when there are more than a couple of covariates. We propose a multivariate Gaussian surface regression model that combines both additive splines and interactive splines, and a highly efficient Markov chain Monte Carlo algorithm that updates all the knot locations jointly. We use shrinkage prior to avoid overfitting with different estimated shrinkage factors for the additive and surface part of the model, and also different shrinkage parameters for the different response variables. Simulated data and an application to firm leverage data show that the approach is computationally efficient, and that allowing for freely estimated knot locations can offer a substantial improvement in out‐of‐sample predictive performance.  相似文献   

14.
The authors examine several aspects of cross‐validation for Bayesian models. In particular, they propose a computational scheme which does not require a separate posterior sample for each training sample.  相似文献   

15.
This paper considers a hierarchical Bayesian analysis of regression models using a class of Gaussian scale mixtures. This class provides a robust alternative to the common use of the Gaussian distribution as a prior distribution in particular for estimating the regression function subject to uncertainty about the constraint. For this purpose, we use a family of rectangular screened multivariate scale mixtures of Gaussian distribution as a prior for the regression function, which is flexible enough to reflect the degrees of uncertainty about the functional constraint. Specifically, we propose a hierarchical Bayesian regression model for the constrained regression function with uncertainty on the basis of three stages of a prior hierarchy with Gaussian scale mixtures, referred to as a hierarchical screened scale mixture of Gaussian regression models (HSMGRM). We describe distributional properties of HSMGRM and an efficient Markov chain Monte Carlo algorithm for posterior inference, and apply the proposed model to real applications with constrained regression models subject to uncertainty.  相似文献   

16.
Hidden Markov models form an extension of mixture models which provides a flexible class of models exhibiting dependence and a possibly large degree of variability. We show how reversible jump Markov chain Monte Carlo techniques can be used to estimate the parameters as well as the number of components of a hidden Markov model in a Bayesian framework. We employ a mixture of zero-mean normal distributions as our main example and apply this model to three sets of data from finance, meteorology and geomagnetism.  相似文献   

17.
In this paper, we adopt the Bayesian approach to expectile regression employing a likelihood function that is based on an asymmetric normal distribution. We demonstrate that improper uniform priors for the unknown model parameters yield a proper joint posterior. Three simulated data sets were generated to evaluate the proposed method which show that Bayesian expectile regression performs well and has different characteristics comparing with Bayesian quantile regression. We also apply this approach into two real data analysis.  相似文献   

18.
Mixture models are flexible tools in density estimation and classification problems. Bayesian estimation of such models typically relies on sampling from the posterior distribution using Markov chain Monte Carlo. Label switching arises because the posterior is invariant to permutations of the component parameters. Methods for dealing with label switching have been studied fairly extensively in the literature, with the most popular approaches being those based on loss functions. However, many of these algorithms turn out to be too slow in practice, and can be infeasible as the size and/or dimension of the data grow. We propose a new, computationally efficient algorithm based on a loss function interpretation, and show that it can scale up well in large data set scenarios. Then, we review earlier solutions which can scale up well for large data set, and compare their performances on simulated and real data sets. We conclude with some discussions and recommendations of all the methods studied.  相似文献   

19.
Bayesian analysis of mortality data   总被引:1,自引:0,他引:1  
Congdon argued that the use of parametric modelling of mortality data is necessary in many practical demographical problems. In this paper, we focus on a form of model introduced by Heligman and Pollard in 1980, and we adopt a Bayesian analysis, using Markov chain Monte Carlo simulation, to produce the posterior summaries required. This opens the way to richer, more flexible inference summaries and avoids the numerical problems that are encountered with classical methods. Particular methodologies to cope with incomplete life-tables and a derivation of joint lifetimes, median times to death and related quantities of interest are also presented.  相似文献   

20.
ABSTRACT

The living hours data of individuals' time spent on daily activities are compositional and include many zeros because individuals do not pursue all activities every day. Thus, we should exercise caution in using such data for empirical analyses. The Bayesian method offers several advantages in analyzing compositional data. In this study, we analyze the time allocation of Japanese married couples using the Bayesian model. Based on the Bayes factors, we compare models that consider and do not consider the correlations between married couples' time use data. The model that considers the correlation shows superior performance. We show that the Bayesian method can adequately take into account the correlations of wives' and husbands' living hours, facilitating the calculation of partial effects that their activities' variables have on living hours. The partial effects of the model that considers the correlations between the couples' time use are easily calculated from the posterior results.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号