首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 140 毫秒
1.
This study extends the generally weighted moving average (GWMA) control chart by imitating the double exponentially weighted moving average (DEWMA) technique. The proposed chart is called the double generally weighted moving average (DGWMA) control chart. Simulation is employed to evaluate the average run length characteristics of the GWMA, DEWMA and DGWMA control charts. An extensive comparison of these control charts reveals that the DGWMA control chart with time-varying control limits is more sensitive than the GWMA and the DEWMA control charts for detecting medium shifts in the mean of a process when the shifts are between 0.5 and 1.5 standard deviations. Additionally, the GWMA control chart performs better when the mean shifts are below the 0.5 standard deviation, and the DEWMA control performs better when the mean shifts are above the 1.5 standard deviation. The design of the DGWMA control chart is also discussed.  相似文献   

2.
ABSTRACT

Control charts are effective tools for signal detection in both manufacturing processes and service processes. Much service data come from a process with variables having non-normal or unknown distributions. The commonly used Shewhart variable control charts, which depend heavily on the normality assumption, should not be properly used in such circumstances. In this paper, we propose a new variance chart based on a simple statistic to monitor process variance shifts. We explore the sampling properties of the new monitoring statistic and calculate the average run lengths (ARLs) of the proposed variance chart. Furthermore, an arcsine transformed exponentially weighted moving average (EWMA) chart is proposed because the ARLs of this modified chart are more intuitive and reasonable than those of the variance chart. We compare the out-of-control variance detection performance of the proposed variance chart with that of the non-parametric Mood variance (NP-M) chart with runs rules, developed by Zombade and Ghute [Nonparametric control chart for variability using runs rules. Experiment. 2014;24(4):1683–1691], and the nonparametric likelihood ratio-based distribution-free exponential weighted moving average (NLE) chart and the combination of traditional exponential weighted moving average (EWMA) mean and EWMA variance (CEW) control chart proposed by Zou and Tsung [Likelihood ratio-based distribution-free EWMA control charts. J Qual Technol. 2010;42(2):174–196] by considering cases in which the critical quality characteristic has a normal, a double exponential or a uniform distribution. Comparison results showed that the proposed chart performs better than the NP-M with runs rules, and the NLE and CEW control charts. A numerical example of service times with a right-skewed distribution from a service system of a bank branch in Taiwan is used to illustrate the application of the proposed variance chart and of the arcsine transformed EWMA chart and to compare them with three existing variance (or standard deviation) charts. The proposed charts show better detection performance than those three existing variance charts in monitoring and detecting shifts in the process variance.  相似文献   

3.
The memory-type control charts are widely used in the process and service industries for monitoring the production processes. The reason is their sensitivity to quickly react against the small process disturbances. Recently, a new cumulative sum (CUSUM) chart has been proposed that uses the exponentially weighted moving average (EWMA) statistic, called the EWMA–CUSUM chart. Similarly, in order to further enhance the sensitivity of the EWMA–CUSUM chart, we propose a new CUSUM chart using the generally weighted moving average (GWMA) statistic, called the GWMA–CUSUM chart, for efficiently monitoring the process mean. The GWMA–CUSUM chart encompasses the existing CUSUM and EWMA–CUSUM charts. Extensive Monte Carlo simulations are used to explore the run length profiles of the GWMA–CUSUM chart. Based on comprehensive run length comparisons, it turns out that the GWMA–CUSUM chart performs substantially better than the CUSUM, EWMA, GWMA, and EWMA–CUSUM charts when detecting small shifts in the process mean. An illustrative example is also presented to explain the implementation and working of the EWMA–CUSUM and GWMA–CUSUM charts.  相似文献   

4.
This paper studies the effects of non-normality and autocorrelation on the performances of various individuals control charts for monitoring the process mean and/or variance. The traditional Shewhart X chart and moving range (MR) chart are investigated as well as several types of exponentially weighted moving average (EWMA) charts and combinations of control charts involving these EWMA charts. It is shown that the combination of the X and MR charts will not detect small and moderate parameter shifts as fast as combinations involving the EWMA charts, and that the performana of the X and MR charts is very sensitive to the normality assumption. It is also shown that certain combinations of EWMA charts can be designed to be robust to non-normality and very effective at detecting small and moderate shifts in the process mean and/or variance. Although autocorrelation can have a significant effect on the in-control performances of these combinations of EWMA charts, their relative out-of-control performances under independence are generally maintained for low to moderate levels of autocorrelation.  相似文献   

5.
Non parametric control charts have received increasing attention in the field of statistical process control. This paper presents a non parametric double generally weighted moving average (DGWMA) sign chart for monitoring small deviations when the quality characteristics of a process are unknown. The statistical performance of the non parametric DGWMA sign chart is evaluated and compared with those of other charts, including the exponentially weighted moving average (EWMA), generally weighted moving average (GWMA), and double EWMA (DEWMA) sign charts. Simulation studies indicate that the non parametric DGWMA sign chart with a large design and median adjustment parameters is always more sensitive than other charts in detecting small changes.  相似文献   

6.
The generally weighted moving average (GWMA) control chart is an extension model of exponentially weighted moving average (EWMA) control chart. Recently, some approaches have been proposed to modify EWMA charts with fast initial response (FIR) features. We introduce these approaches in GWMA-type charts. Via simulation, various control schemes are designed and then their average run lengths are computed and compared. Based on the overall performance, it is showed that the DGWMA chart is the best choice especially when the shift is moderate, and the GWMA charts provided with additional FIR feature have a good performance only in detecting large shifts during the initial stage.  相似文献   

7.
The double exponentially weighted moving average (DEWMA) technique has been investigated in recent years for detecting shifts in the process mean and has been shown to be more efficient than the corresponding exponentially weighted moving average (EWMA) technique. In this article, we extend the DEWMA technique of performing exponential smoothing twice to the double moving average (DMA) technique by computing the moving average twice. Using simulation, we show that our proposed DMA chart improves upon the ARL performance of the moving average (MA) chart in detecting mean shifts of small to moderate magnitudes. It is also shown through simulation that, generally, the DMA charts with spans, w = 10 and 15 provide comparable average run length (ARL) performances to the EWMA and cumulative sum (CUSUM) charts, designed for detecting small shifts.  相似文献   

8.
ABSTRACT

Profile monitoring is one of the new research areas in statistical process control. Most of the control charts in this area are designed with fixed sampling rate which makes the control chart slow in detecting small to moderate shifts. In order to improve the performance of the conventional fixed control charts, adaptive features are proposed in which, one or more design parameters vary during the process. In this paper the variable sample size feature of EWMA3 and MEWMA schemes are proposed for monitoring simple linear profiles. The EWMA3 method is based on the combination of three exponentially weighted moving average (EWMA) charts for monitoring three parameters of a simple linear profile separately and the Multivariate EWMA (MEWMA) chart is based on the using a single chart to monitor the coefficients and variance of a general linear profile. Also a two-sided control chart is proposed for monitoring the standard deviation in the EWMA3 method. The performance of the proposed charts is compared in terms of the average time to signal. Numerical examples show that using adaptive features increase the power of control charts in detecting the parameter shifts. Finally, the performance of the proposed variable sample size schemes is illustrated through a real case in the leather industry.  相似文献   

9.
Traditionally, using a control chart to monitor a process assumes that process observations are normally and independently distributed. In fact, for many processes, products are either connected or autocorrelated and, consequently, obtained observations are autocorrelative rather than independent. In this scenario, applying an independence assumption instead of autocorrelation for process monitoring is unsuitable. This study examines a generally weighted moving average (GWMA) with a time-varying control chart for monitoring the mean of a process based on autocorrelated observations from a first-order autoregressive process (AR(1)) with random error. Simulation is utilized to evaluate the average run length (ARL) of exponentially weighted moving average (EWMA) and GWMA control charts. Numerous comparisons of ARLs indicate that the GWMA control chart requires less time to detect various shifts at low levels of autocorrelation than those at high levels of autocorrelation. The GWMA control chart is more sensitive than the EWMA control chart for detecting small shifts in a process mean.  相似文献   

10.
Abstract

Generally weighted moving average (GWMA) control charts have been validated for effective detection of small process shifts, and perform better than exponentially weighted moving average (EWMA) control charts. These charts are available based on single sampling; however, repetitive sampling charts have received less attention. Here, a GWMA control chart based on repetitive sampling (namely an RS-GWMA chart) is proposed for enhancing detectability of small process shifts. Simulations show that the proposed RS-GWMA chart with large design and small adjustment parameters outperforms existing hybrid EWMA (HEWMA) control charts based on repetitive sampling. An in-silico example is considered for demonstrating the applicability of the proposed RS-GWMA chart.  相似文献   

11.
The exponentially weighted moving average (EWMA) control chart is efficient in detecting small changes in process parameters but less efficient when the changes are relatively large, due to what is known as the inertia problem. To diminish the inertia, an adaptive EWMA (AEWMA) chart has been proposed for monitoring process locations to improve over the traditional EWMA charts. The basic idea of the AEWMA scheme is to dynamically weight the past observations according to a suitable function of the current prediction error. This article extends the idea of the AEWMA chart for monitoring process locations to the case of monitoring process dispersion. A Markov chain model is established to analyze and design the suggested chart. It is shown that the AEWMA dispersion chart performs better than the EWMA and other dispersion charts in terms of its ability to perform relatively well at both small and large changes in process dispersion.  相似文献   

12.
The Poisson GWMA (PGWMA) control chart is an extension model of Poisson EWMA chart. It is substantially sensitive to small process shifts for monitoring Poisson observations. Recently, some approaches have been proposed to modify EWMA charts with fast initial response (FIR) features. In this article, we employ these approaches in PGWMA charts and introduce a novel chart called Poisson double GWMA (PDGWMA) chart for comparison. Using simulation, various control schemes are designed and their average run lengths (ARLs) are computer and compared. It is shown that the PDGWMA chart is the first choice in detecting small shifts especially when the shifts are downward, and the PGWMA chart with adjusted time-varying control limits performs excellently in detecting great process shifts during the initial stage.  相似文献   

13.
The exponentially weighted moving average (EWMA) control charts with variable sampling intervals (VSIs) have been shown to be substantially quicker than the fixed sampling intervals (FSI) EWMA control charts in detecting process mean shifts. The usual assumption for designing a control chart is that the data or measurements are normally distributed. However, this assumption may not be true for some processes. In the present paper, the performances of the EWMA and combined –EWMA control charts with VSIs are evaluated under non-normality. It is shown that adding the VSI feature to the EWMA control charts results in very substantial decreases in the expected time to detect shifts in process mean under both normality and non-normality. However, the combined –EWMA chart has its false alarm rate and its detection ability is affected if the process data are not normally distributed.  相似文献   

14.
In this article, we extend a single exponentially weighted moving average semicircle (EWMA-SC) chart to a single generally weighted moving average (GWMA) chart. This new control chart can effectively combine the features of the SC chart with GWMA techniques, and can easily indicate the source and direction of a change. We perform simulations to evaluate the average run length, standard deviation of the run length, and diagnostic abilities of the GWMA-SC and EWMA-SC charts. An extensive comparison shows that the GWMA-SC control chart is more sensitive than the EWMA-SC chart for detecting small shifts in the process mean and/or variability.  相似文献   

15.
Control charts are a powerful statistical process monitoring tool often used to monitor the stability of manufacturing processes. In quality control applications, measurement errors adversely affect the performance of control charts. In this paper, we study the effect of measurement error on the detection abilities of the exponentially weighted moving average (EWMA) control charts for monitoring process mean based on ranked set sampling (RSS), median RSS (MRSS), imperfect RSS (IRSS) and imperfect MRSS (IMRSS) schemes. We also study the effect of multiple measurements and non-constant error variance on the performances of the EWMA control charts. The EWMA control chart based on simple random sampling is compared with the EWMA control charts based on RSS, MRSS, IRSS and IMRSS schemes. The performances of the EWMA control charts are evaluated in terms of out-of-control average run length and standard deviation of run lengths. It turns out that the EWMA control charts based on MRSS and IMRSS schemes are better than their counterparts for all measurement error cases considered here.  相似文献   

16.
Traditionally, an X-chart is used to control the process mean and an R-chart to control the process variance. However, these charts are not sensitive to small changes in process parameters. A good alternative to these charts is the exponentially weighted moving average (EWMA) control chart for controlling the process mean and variability, which is very effective in detecting small process disturbances. In this paper, we propose a single chart that is based on the non-central chi-square statistic, which is more effective than the joint X and R charts in detecting assignable cause(s) that change the process mean and/or increase variability. It is also shown that the EWMA control chart based on a non-central chi-square statistic is more effective in detecting both increases and decreases in mean and/or variability.  相似文献   

17.
Adaptive control charts have been developed for improving the capability of control charts in detecting small shifts. In this article, we propose a new exponential weighted moving average control chart with variable sample size, in which the sample size is determined as an integer linear function by EWMA statistic value. The performance of the proposed VSS EWMA control chart is compared with FSS EWMA as well as traditional VSS EWMA control charts. The results show the better performance of the proposed VSS strategy respect to the traditional one and fixed sample size.  相似文献   

18.
ABSTRACT

This article develops an exponentially weighted moving average (EWMA) control chart using an auxiliary variable and repetitive sampling for efficient detection of small to moderate shifts in location. A EWMA statistic of a product estimator of the average (which utilities the information of auxiliary variables as well as repetitive sampling) is plotted on the proposed chart. The control chart coefficients of the proposed EWMA chart are determined for two strategic limits known as outer and inner control limits for the target in-control average run length. The performance of the proposed EWMA chart is studied using average run length when a shift occurs in the process average. The efficiency of the developed chart is compared with the competitive existing control charts. The results of the study revealed that proposed EWMA chart is more efficient than others to detect small changes in process mean.  相似文献   

19.
In the statistical process control literature, there exists several improved quality control charts based on cost-effective sampling schemes, including the ranked set sampling (RSS) and median RSS (MRSS). A generalized cost-effective RSS scheme has been recently introduced for efficiently estimating the population mean, namely varied L RSS (VLRSS). In this article, we propose a new exponentially weighted moving average (EWMA) control chart for monitoring the process mean using VLRSS, named the EWMA-VLRSS chart, under both perfect and imperfect rankings. The EWMA-VLRSS chart encompasses the existing EWMA charts based on RSS and MRSS (named the EWMA-RSS and EWMA-MRSS charts). We use extensive Monte Carlo simulations to compute the run length characteristics of the EWMA-VLRSS chart. The proposed chart is then compared with the existing EWMA charts. It is found that, with either perfect or imperfect rankings, the EWMA-VLRSS chart is more sensitive than the EWMA-RSS and EWMA-MRSS charts in detecting small to large shifts in the process mean. A real dataset is also used to explain the working of the EWMA-VLRSS chart.  相似文献   

20.
In this paper, exponentially weighted moving average (EWMA) control charts for multinomial data are developed with a three-level classification scheme. The lower and upper control limits of the proposed EWMA control chart are evaluated using Markov chain approximation. Compared with the three-level Shewhart control chart, numerical results indicate that the proposed EWMA control chart is relatively sensitive to small shifts in a three-level multinomial process. A figure and a table are provided for practitioners to select the value of chart limit coefficient that gives the desired in-control average run length.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号