首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In this article, we have developed asymptotic theory for the simultaneous estimation of the k means of arbitrary populations under the common mean hypothesis and further assuming that corresponding population variances are unknown and unequal. The unrestricted estimator, the Graybill-Deal-type restricted estimator, the preliminary test, and the Stein-type shrinkage estimators are suggested. A large sample test statistic is also proposed as a pretest for testing the common mean hypothesis. Under the sequence of local alternatives and squared error loss, we have compared the asymptotic properties of the estimators by means of asymptotic distributional quadratic bias and risk. Comprehensive Monte-Carlo simulation experiments were conducted to study the relative risk performance of the estimators with reference to the unrestricted estimator in finite samples. Two real-data examples are also furnished to illustrate the application of the suggested estimation strategies.  相似文献   

2.
In this paper we propose two empirical Bayes shrinkage estimators for the reliability of the exponential distribution and study their properties. Under the uniform prior distribution and the inverted gamma prior distribution these estimators are developed and compared with a preliminary test estimator and with a shrinkage testimator in terms of mean squared error. The proposed empirical Bayes shrinkage estimator under the inverted gamma prior distribution is shown to be preferable to the preliminary test estimator and the shrinkage testimator when the prior value of mean life is clsoe to the true mean life.  相似文献   

3.
We examine the asymptotic and small sample properties of model-based and robust tests of the null hypothesis of no randomized treatment effect based on the partial likelihood arising from an arbitrarily misspecified Cox proportional hazards model. When the distribution of the censoring variable is either conditionally independent of the treatment group given covariates or conditionally independent of covariates given the treatment group, the numerators of the partial likelihood treatment score and Wald tests have asymptotic mean equal to 0 under the null hypothesis, regardless of whether or how the Cox model is misspecified. We show that the model-based variance estimators used in the calculation of the model-based tests are not, in general, consistent under model misspecification, yet using analytic considerations and simulations we show that their true sizes can be as close to the nominal value as tests calculated with robust variance estimators. As a special case, we show that the model-based log-rank test is asymptotically valid. When the Cox model is misspecified and the distribution of censoring depends on both treatment group and covariates, the asymptotic distributions of the resulting partial likelihood treatment score statistic and maximum partial likelihood estimator do not, in general, have a zero mean under the null hypothesis. Here neither the fully model-based tests, including the log-rank test, nor the robust tests will be asymptotically valid, and we show through simulations that the distortion to test size can be substantial.  相似文献   

4.
S. E. Ahmed 《Statistics》2013,47(3):265-277
The problem of pooling means is considered based on two samples in presence of the uncertain prior information that these samples are taken from possibly identical populations. Two discrete models, Poisson and binomial are considered in particular. Three estimators, i.e. the unrestricted estimator, shrinkage restricted estimator and estimators based on preliminary test are proposed. Their asymptotic mean squared errors are derived and compared. It is demonstrated via asymptotic results that the range of the parameter space in which shrinkage preliminary test estimator dominates the unrestricted estimator is wider than that of the usual preliminary test estimator. A Monte Carlo study for Poisson model is presented to compare the performance of the estimators for small samples.  相似文献   

5.
In this paper, the problem of estimating the mean vector under non-negative constraints on location vector of the multivariate normal distribution is investigated. The value of the wavelet threshold based on Stein''s unbiased risk estimators is calculated for the shrinkage estimator in restricted parameter space. We suppose that covariance matrix is unknown and we find the dominant class of shrinkage estimators under Balance loss function. The performance evaluation of the proposed class of estimators is checked through a simulation study by using risk and average mean square error values.  相似文献   

6.
In this paper some improved estimators for the measure of dispersion of an inverse Gaussian distribution have been obtained. If some guessed value of λ is available in the form of a point esitmate λ0 the shrikage technique has been applied and an estimator has been proposed which has smaller mean squared error than the usual estimator. Since the shrinkage estimator has better performance if the guessed value is in the vicinity of the true value, a shrinkage testimator has also been proposed and compared with the usual estimator.  相似文献   

7.
We suggest five types of two-stage James-Stein type estimators of the mean vector μ based on prior knowledge about μ and two-stage sampling scheme proposed by Waikar and Katti(1971) Their risks are evaluated and calculated to compare with two-stage estimator suggested by Waikar and Katti(1971) when the prior form of an initial estimate of μ is 0. We find that the five estimators suggested here all have high efficiencies in large dimensions and/or in large value of ratio of two sample sizes at each stage.  相似文献   

8.
Rasul A. Khan 《Statistics》2015,49(3):705-710
Let X1, X2, …, Xn be iid N(μ, aμ2) (a>0) random variables with an unknown mean μ>0 and known coefficient of variation (CV) √a. The estimation of μ is revisited and it is shown that a modified version of an unbiased estimator of μ [cf. Khan RA. A note on estimating the mean of a normal distribution with known CV. J Am Stat Assoc. 1968;63:1039–1041] is more efficient. A certain linear minimum mean square estimator of Gleser and Healy [Estimating the mean of a normal distribution with known CV. J Am Stat Assoc. 1976;71:977–981] is also modified and improved. These improved estimators are being compared with the maximum likelihood estimator under squared-error loss function. Based on asymptotic consideration, a large sample confidence interval is also mentioned.  相似文献   

9.
For the model X ~ Np: (θ,I)preliminary test estimator (PTE), shrinkage and positive-rule versions of the MLE (X) of θare mutually compared in the light of the Pitman closeness measure. The usual dominance properties of these estimators pertaining to the conventional quadratic loss criterion are shown to remain intact in the current context too. In an asymptotic setup, the conclusions hold for a much wider class of estimators pertaining to general parametric and nonparametric models.  相似文献   

10.
The problem of estimating the Poisson mean is considered based on the two samples in the presence of uncertain prior information (not in the form of distribution) that two independent random samples taken from two possibly identical Poisson populations. The parameter of interest is λ1 from population I. Three estimators, i.e. the unrestricted estimator, restricted estimator and preliminary test estimator are proposed. Their asymptotic mean squared errors are derived and compared; parameter regions have been found for which restricted and preliminary test estimators are always asymptotically more efficient than the classical estimator. The relative dominance picture of the estimators is presented. Maximum and minimum asymptotic efficiencies of the estimators relative to the classical estimator are tabulated. A max-min rule for the size of the preliminary test is also discussed. A Monte Carlo study is presented to compare the performance of the estimator with that of Kale and Bancroft (1967).  相似文献   

11.
In case it is doubtful whether two sets of data have the same mean vector, four estimation strategies have been developed for the target mean vector. In this situation, the estimates based on a preliminary test as well as on Stein-rule are advantageous. Two measures of relative efficiency are considered; one based on thequadratic loss function, and the other on the determinant of the mean square error matrix. A max-min rule for the size of the preliminary test of significance is presented. It is demonstrated that the shrinkage estimator dominates the classical estimator, whereas none of the shrinkage estimator and the preliminary test estimator dominate each other. The range in the parameter space where preliminary test estimator dominates shrinkage is investigated analytically and computationally. It is found that the shrinkage estimator outperform the preliminary test estimator except in a region around the null hypothesis. Moreover, for large values of a, the level of statistical significance, shrinkage estimator dominates the preliminary test estimator uniformly. The relative dominance of the estimators is presented.  相似文献   

12.
We consider the estimation of a location parameter θ in a one-sample problem. A measure of the asymptotic performance of an estimator sequence {Tn} = T is given by the exponential rate of convergence to zero of the tail probability, which for consistent estimator sequences is bounded by a constant, B (θ, ?), called the Bahadur bound. We consider two consistent estimators: the maximum-likelihood estimator (mle) and a consistent estimator based on a likelihood-ratio statistic, which we call the probability-ratio estimator (pre). In order to compare the local behaviour of these estimators, we obtain Taylor series expansions in ? for B (θ, ?) and the exponential rates of the mle and pre. Finally, some numerical work is presented in which we consider a variety of underlying distributions.  相似文献   

13.
This paper considers alternative estimators of the intercept parameter of the linear regression model with normal error when uncertain non-sample prior information about the value of the slope parameter is available. The maximum likelihood, restricted, preliminary test and shrinkage estimators are considered. Based on their quadratic biases and mean square errors the relative performances of the estimators are investigated. Both analytical and graphical comparisons are explored. None of the estimators is found to be uniformly dominating the others. However, if the non-sample prior information regarding the value of the slope is not too far from its true value, the shrinkage estimator of the intercept parameter dominates the rest of the estimators.  相似文献   

14.
《统计学通讯:理论与方法》2012,41(13-14):2305-2320
We consider shrinkage and preliminary test estimation strategies for the matrix of regression parameters in multivariate multiple regression model in the presence of a natural linear constraint. We suggest a shrinkage and preliminary test estimation strategies for the parameter matrix. The goal of this article is to critically examine the relative performances of these estimators in the direction of the subspace and candidate subspace restricted type estimators. Our analytical and numerical results show that the proposed shrinkage and preliminary test estimators perform better than the benchmark estimator under candidate subspace and beyond. The methods are also applied on a real data set for illustrative purposes.  相似文献   

15.
A regression estimator using two prior values of population mean (μx) of an auxiliary variable (x) is proposed after a preliminary test of closeness of these prior values to the true valueμx. The proposed preliminary test regression estimator has been found to be more efficient in general than the usual regression estimator when prior values are used in place of μxwithout preliminary test of significance. The efficiency of the proposed estimator over the usual regression estimator has also been computed for different values of Δ0, Δ1, n, and ρ, which showed considerable gain in precision.  相似文献   

16.
Shrinkage estimators are often obtained by adjusting the usual estimator towards a target subspace to which the true parameter might belong. However, meaningful reductions in risk below the usual estimator can typically be achieved in a very small part of the parameter space. In the multivariate-normal mean estimation problem, E. George, in a series of papers, showed how multiple-shrinkage estimators (data-weighted averages of several different shrinkage estimators) can attain substantial risk reductions in a large part of the parameter space. This paper extends the multiple-shrinkage results to the case of simultaneous estimation of the means of several one-parameter exponential families. Our results are developed by using an identity similar to that of Haff and Johnson (1986). A computer simulation is reported to indicate the magnitude of reductions in risk. Our results are also applied to the problem of how to choose appropriate component variables to combine before a suitable shrinkage estimator is considered.  相似文献   

17.
A ratio test based on the indicators of the data minus the sample median is proposed to detect the change in the mean of α-mixing stochastic sequences. The asymptotic distribution of the test is derived under the null hypothesis. The consistency of the proposed test is also obtained under the hypothesis that μ changes at some unknown time. We also propose a consistent estimator for the change point on the ratio test. Simulations demonstrate that the test and the estimator behaves well for heavy-tailed sequences. At last, an empirical application demonstrate the validity of the test and the estimator.  相似文献   

18.
A large-sample test for testing the equality of two effect sizes is presented. The null and non-null distributions of the proposed test statistic are derived. Further, the problem of estimating the effect size is considered when it is a priori suspected that two effect sizes may be close to each other. The combined data from all the samples leads to more efficient estimator of the effect size. We propose a basis for optimally combining estimation problems when there is uncertainty concerning the appropriate statistical model-estimator to use in representing the sampling process. The objective here is to produce natural adaptive estimators with some good statistical properties. In the context of two bivariate statistical models, the expressions for the asymptotic mean squared error of the proposed estimators are derived and compared with the parallel expressions for the benchmark estimators. We demonstrate that the suggested preliminary test estimator has superior asymptotic mean squared error performance relative to the benchmark and pooled estimators. A simulation study and application of the methodology to real data are presented.  相似文献   

19.
Summary.  We consider the problem of estimating the proportion of true null hypotheses, π 0, in a multiple-hypothesis set-up. The tests are based on observed p -values. We first review published estimators based on the estimator that was suggested by Schweder and Spjøtvoll. Then we derive new estimators based on nonparametric maximum likelihood estimation of the p -value density, restricting to decreasing and convex decreasing densities. The estimators of π 0 are all derived under the assumption of independent test statistics. Their performance under dependence is investigated in a simulation study. We find that the estimators are relatively robust with respect to the assumption of independence and work well also for test statistics with moderate dependence.  相似文献   

20.
ABSTRACT

This article addresses the problem of parameter estimation of the logistic regression model under subspace information via linear shrinkage, pretest, and shrinkage pretest estimators along with the traditional unrestricted maximum likelihood estimator and restricted estimator. We developed an asymptotic theory for the linear shrinkage and pretest estimators and compared their relative performance using the notion of asymptotic distributional bias and asymptotic quadratic risk. The analytical results demonstrated that the proposed estimation strategies outperformed the classical estimation strategies in a meaningful parameter space. Detailed Monte-Carlo simulation studies were conducted for different combinations and the performance of each estimation method was evaluated in terms of simulated relative efficiency. The results of the simulation study were in strong agreement with the asymptotic analytical findings. Two real-data examples are also given to appraise the performance of the estimators.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号