首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Researches propose various methods for comparing the means of two log-normal distributions. Some of these methods have been recently extended to test the equality means of several log-normal populations. Investigations show that none of the established methods is satisfactory. In this article, we provide three methods based on the computational approach test, which is a parametric bootstrap approach, for testing the means of several log-normal distributions. Further, we compare our methods with the existing methods through Monte Carlo simulation. The numerical results show that the Type I errors of these procedures are satisfactory regardless of the sample size, number of populations, and the true parameters. Finally, we explain the considered methods by real examples.  相似文献   

2.
Many applications of the Inverse Gaussian distribution, including numerous reliability and life testing results are presented in statistical literature. The paper studies the problem of using entropy tests to examine the goodness of fit of an Inverse Gaussian distribution with unknown parameters. Some entropy tests based on different entropy estimates are proposed. Critical values of the test statistics for various sample sizes are obtained by Monte Carlo simulations. Type I error of the tests is investigated and then power values of the tests are compared with the competing tests against various alternatives. Finally, recommendations for the application of the tests in practice are presented.  相似文献   

3.
In this study, we develop a test based on computational approach for the equality of variances of several normal populations. The proposed method is numerically compared with the existing methods. The numeric results demonstrate that the proposed method performs very well in terms of type I error rate and power of test. Furthermore we study the robustness of the tests by using simulation study when the underlying data are from t, exponential and uniform distributions. Finally we analyze a real dataset that motivated our study using the proposed test.  相似文献   

4.
The present paper deals with the development of a group sequential test when response variable has an inverse Gaussian distribution with known scale parameter.  相似文献   

5.
For testing the fit of the inverse Gaussian distribution with unknown parameters, the empirical distribution-function statistic A2 is studied. Two procedures are followed in constructing the test statistic; they yield the same asymptotic distribution. In the first procedure the parameters in the distribution function are directly estimated, and in the second the distribution function is estimated by its Rao-Blackwell distribution estimator. A table is given for the asymptotic critical points of A2. These are shown to depend only on the ratio of the unknown parameters. An analysis is provided of the effect of estimating the ratio to enter the table for A2. This analysis enables the proposal of the complete operating procedure, which is sustained by a Monte Carlo study.  相似文献   

6.
A test for equality of two normal means when the data consist of both paired and unpaired observations is proposed. The proposed test is compared with two other standard methods known in the literature with respect to the type I error rate and power using simulation results.  相似文献   

7.
We consider the problem of testing the equality of several multivariate normal mean vectors under heteroscedasticity. We first construct a fiducial confidence region (FCR) for the differences between normal mean vectors and we then propose a fiducial test for comparing mean vectors by inverting the FCR. We also propose a simple approximate test that is based on a modification of the χ2 approximation. This simple test avoids the complications of simulation-based inference methods. We show that the proposed fiducial test has correct type one error rate asymptotically. We compare the proposed fiducial and approximate tests with the parametric bootstrap test in terms of controlling the type one error rate via an extensive simulation study. Our simulation results show that the proposed fiducial and approximate tests control the type one error rate, while there are cases that the parametric bootstrap test is out of control. We also discuss the power performance of the tests. Finally, we illustrate with a real example how our proposed methods are applicable in analyzing repeated measure designs including a single grouping variable.  相似文献   

8.
In this paper, we assume that the duration of a process has two different intrinsic components or phases which are independent. The first is the time it takes for a trade to be initiated in the market (for example, the time during which agents obtain knowledge about the market in which they are operating and accumulate information, which is coherent with Brownian motion) and the second is the subsequent time required for the trade to develop into a complete duration. Of course, if the first time is zero then the trade is initiated immediately and no initial knowledge is required. If we assume a specific compound Bernoulli distribution for the first time and an inverse Gaussian distribution for the second, the resulting convolution model has a mixture of an inverse Gaussian distribution with its reciprocal, which allows us to specify and test the unobserved heterogeneity in the autoregressive conditional duration (ACD) model.

Our proposals make it possible not only to capture various density shapes of the durations but also easily to accommodate the behaviour of the tail of the distribution and the non monotonic hazard function. The proposed model is easy to fit and characterizes the behaviour of the conditional durations reasonably well in terms of statistical criteria based on point and density forecasts.  相似文献   


9.
Frailty models are used in the survival analysis to account for the unobserved heterogeneity in individual risks to disease and death. To analyze the bivariate data on related survival times (e.g., matched pairs experiments, twin, or family data), the shared frailty models were suggested. These models are based on the assumption that frailty acts multiplicatively to hazard rate. In this article, we assume that frailty acts additively to hazard rate. We introduce the shared inverse Gaussian frailty models with three different baseline distributions, namely the generalized log-logistic, the generalized Weibull, and exponential power distribution. We introduce the Bayesian estimation procedure using Markov chain Monte Carlo technique to estimate the parameters involved in these models. We apply these models to a real-life bivariate survival dataset of McGilchrist and Aisbett (1991 McGilchrist, C.A., Aisbett, C.W. (1991). Regression with frailty in survival analysis. Biometrics 47:461466.[Crossref], [PubMed], [Web of Science ®] [Google Scholar]) related to the kidney infection data, and a better model is suggested for the data.  相似文献   

10.
In this study, we propose a new test based on a computational approach to test the equality of several log-normal means. We compare this test with some existing methods in terms of the type-I error rate and power using Monte Carlo simulations for varying values of number of groups and sample sizes. The simulation results indicate that the proposed test could be suggested as a good alternative for testing the equality of several log-normal means.  相似文献   

11.
This article presents a new procedure for testing homogeneity of scale parameters from k independent inverse Gaussian populations. Based on the idea of generalized likelihood ratio method, a new generalized p-value is derived. Some simulation results are presented to compare the performance of the proposed method and existing methods. Numerical results show that the proposed test has good size and power performance.  相似文献   

12.
Recently, Zhang [Simultaneous confidence intervals for several inverse Gaussian populations. Stat Probab Lett. 2014;92:125–131] proposed simultaneous pairwise confidence intervals (SPCIs) based on the fiducial generalized pivotal quantity concept to make inferences about the inverse Gaussian means under heteroscedasticity. In this paper, we propose three new methods for constructing SPCIs to make inferences on the means of several inverse Gaussian distributions when scale parameters and sample sizes are unequal. One of the methods results in a set of classic SPCIs (in the sense that it is not simulation-based inference) and the two others are based on a parametric bootstrap approach. The advantages of our proposed methods over Zhang’s (2014) method are: (i) the simulation results show that the coverage probability of the proposed parametric bootstrap approaches is fairly close to the nominal confidence coefficient while the coverage probability of Zhang’s method is smaller than the nominal confidence coefficient when the number of groups and the variance of groups are large and (ii) the proposed set of classic SPCIs is conservative in contrast to Zhang’s method.  相似文献   

13.
The conventional Shewhart-type control chart is developed essentially on the central limit theorem. Thus, the Shewhart-type control chart performs particularly well when the observed process data come from a near-normal distribution. On the other hand, when the underlying distribution is unknown or non-normal, the sampling distribution of a parameter estimator may not be available theoretically. In this case, the Shewhart-type charts are not available. Thus, in this paper, we propose a parametric bootstrap control chart for monitoring percentiles when process measurements have an inverse Gaussian distribution. Through extensive Monte Carlo simulations, we investigate the behaviour and performance of the proposed bootstrap percentile charts. The average run lengths of the proposed percentage charts are investigated.  相似文献   

14.
This paper presents a brief review of the asymptotic properties of the pseudo-maximum likelihood estimator in the regression model where the reciprocal of the mean of the dependent variable is considered to be a linear function of the regressor variables, and the observations on the dependent variable are assumed to have an inverse Gaussian distribution. The large sample theory for the pseudo-maximum likelihood estimator presented in Babu and Chaubey (1996) is highlighted and a simulation study is carried out to compare the approximation yielded by the bootstrap distribution to that of the asymptotic distribution.  相似文献   

15.
This paper provides the modified likelihood ratio criterion for testing whether the mean of the inverse Gaussian distribution can be set to unity giving rise to Standard form of the Wald distribution. Estimates of probability of correct selection has been obtained on the basis of a Monte Carlo study of 1,000 samples. Finally a set of adaptive estimators for the parameters are proposed and studied on the basis of data generated from the two distributions.  相似文献   

16.
Consider the two parameter Inverse Gaussian distribution with mean μ and scale parameter λ.

Suppose one is interested in testing a problem on a linear combination for the means of Inverse Gaussian distributions. For this problem a test and confidence intervals are proposed when: (1) λ’s are known and; (2) λ’s are unknown.

Finally an application of the procedures is illustrated with a data set of failure times of high-speed turbine bearings.  相似文献   

17.
Using a new approach based on Meijer G-functions and computer simulation, we numerically compute the exact null distribution of the modified-likelihood ratio statistic used to test the hypothesis that several covariances matrices of normal distributions are equal. Small samples of different sizes are considered, and for the case of two matrices, we introduce a new test based on determinants, with the null distribution of its criterion also fully computable. Comparisons with published results show the accuracy of our approach, which is proved to be more flexible and adaptable to different cases.  相似文献   

18.
Inverse sampling is widely applied in studies with dichotomous outcomes, especially when the subjects arrive sequentially or the response of interest is difficult to obtain. In this paper, we investigate the rate ratio test problem under inverse sampling based on gradient statistic with the asymptotic method and parametric bootstrap technique. The gradient statistic has many advantages, for example, it is simple to calculate and competitive with Wald-type, score and likelihood ratio tests in terms of local power. Numerical studies are carried out to evaluate the performance of our gradient test and the existing tests, namely Wald-type, score and likelihood ratio tests. The simulation results suggest that the gradient test based on the parametric bootstrap method has excellent type I error control and large powers even in small sample design. Two real examples, from a heart disease study and a drug comparison study, are applied to illustrate our methods.  相似文献   

19.
To study the equality of regression coefficients in several heteroscedastic regression models, we propose a fiducial-based test, and theoretically examine the frequency property of the proposed test. We numerically compare the performance of the proposed approach with the parametric bootstrap (PB) approach. Simulation results indicate that the fiducial approach controls the Type I error rates satisfactorily regardless of the number of regression models and sample sizes, whereas the PB approach tends to be a little of liberal in some scenarios. Finally, the proposed approach is applied to an analysis of a real dataset for illustration.  相似文献   

20.
ABSTRACT

The shared frailty models are often used to model heterogeneity in survival analysis. The most common shared frailty model is a model in which hazard function is a product of a random factor (frailty) and the baseline hazard function which is common to all individuals. There are certain assumptions about the baseline distribution and the distribution of frailty. In this paper, we consider inverse Gaussian distribution as frailty distribution and three different baseline distributions, namely the generalized Rayleigh, the weighted exponential, and the extended Weibull distributions. With these three baseline distributions, we propose three different inverse Gaussian shared frailty models. We also compare these models with the models where the above-mentioned distributions are considered without frailty. We develop the Bayesian estimation procedure using Markov Chain Monte Carlo (MCMC) technique to estimate the parameters involved in these models. We present a simulation study to compare the true values of the parameters with the estimated values. A search of the literature suggests that currently no work has been done for these three baseline distributions with a shared inverse Gaussian frailty so far. We also apply these three models by using a real-life bivariate survival data set of McGilchrist and Aisbett (1991 McGilchrist, C.A., Aisbett, C.W. (1991). Regression with frailty in survival analysis. Biometrics 47:461466.[Crossref], [PubMed], [Web of Science ®] [Google Scholar]) related to the kidney infection data and a better model is suggested for the data using the Bayesian model selection criteria.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号