首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
This paper develops Bayesian inference of extreme value models with a flexible time-dependent latent structure. The generalized extreme value distribution is utilized to incorporate state variables that follow an autoregressive moving average (ARMA) process with Gumbel-distributed innovations. The time-dependent extreme value distribution is combined with heavy-tailed error terms. An efficient Markov chain Monte Carlo algorithm is proposed using a state-space representation with a finite mixture of normal distributions to approximate the Gumbel distribution. The methodology is illustrated by simulated data and two different sets of real data. Monthly minima of daily returns of stock price index, and monthly maxima of hourly electricity demand are fit to the proposed model and used for model comparison. Estimation results show the usefulness of the proposed model and methodology, and provide evidence that the latent autoregressive process and heavy-tailed errors play an important role to describe the monthly series of minimum stock returns and maximum electricity demand.  相似文献   

2.
ABSTRACT

The generalized extreme value distribution and its particular case, the Gumbel extreme value distribution, are widely applied for extreme value analysis. The Gumbel distribution has certain drawbacks because it is a non-heavy-tailed distribution and is characterized by constant skewness and kurtosis. The generalized extreme value distribution is frequently used in this context because it encompasses the three possible limiting distributions for a normalized maximum of infinite samples of independent and identically distributed observations. However, the generalized extreme value distribution might not be a suitable model when each observed maximum does not come from a large number of observations. Hence, other forms of generalizations of the Gumbel distribution might be preferable. Our goal is to collect in the present literature the distributions that contain the Gumbel distribution embedded in them and to identify those that have flexible skewness and kurtosis, are heavy-tailed and could be competitive with the generalized extreme value distribution. The generalizations of the Gumbel distribution are described and compared using an application to a wind speed data set and Monte Carlo simulations. We show that some distributions suffer from overparameterization and coincide with other generalized Gumbel distributions with a smaller number of parameters, that is, are non-identifiable. Our study suggests that the generalized extreme value distribution and a mixture of two extreme value distributions should be considered in practical applications.  相似文献   

3.
Abstract

The multivariate elliptically contoured distributions provide a viable framework for modeling time-series data. It includes the multivariate normal, power exponential, t, and Cauchy distributions as special cases. For multivariate elliptically contoured autoregressive models, we derive the exact likelihood equations for the model parameters. They are closely related to the Yule-Walker equations and involve simple function of the data. The maximum likelihood estimators are obtained by alternately solving two linear systems and illustrated using the simulation data.  相似文献   

4.
A class of prior distributions for multivariate autoregressive models is presented. This class of priors is built taking into account the latent component structure that characterizes a collection of autoregressive processes. In particular, the state-space representation of a vector autoregressive process leads to the decomposition of each time series in the multivariate process into simple underlying components. These components may have a common structure across the series. A key feature of the proposed priors is that they allow the modeling of such common structure. This approach also takes into account the uncertainty in the number of latent processes, consequently handling model order uncertainty in the multivariate autoregressive framework. Posterior inference is achieved via standard Markov chain Monte Carlo (MCMC) methods. Issues related to inference and exploration of the posterior distribution are discussed. We illustrate the methodology analyzing two data sets: a synthetic data set with quasi-periodic latent structure, and seasonally adjusted US monthly housing data consisting of housing starts and housing sales over the period 1965 to 1974.  相似文献   

5.
ABSTRACT

We establish the existence of multivariate stationary processes with arbitrary marginal copula distributions and long-range dependence. The effect of long-range dependence on extreme value copula estimation is illustrated in the case of known marginals, by deriving functional limit theorems for a standard non parametric estimator of the Pickands dependence function and related parametric projection estimators. The asymptotic properties turn out to be very different from the case of iid or short-range dependent observations. Simulated and real data examples illustrate the results.  相似文献   

6.
Abstract

We propose a statistical method for clustering multivariate longitudinal data into homogeneous groups. This method relies on a time-varying extension of the classical K-means algorithm, where a multivariate vector autoregressive model is additionally assumed for modeling the evolution of clusters' centroids over time. Model inference is based on a least-squares method and on a coordinate descent algorithm. To illustrate our work, we consider a longitudinal dataset on human development. Three variables are modeled, namely life expectancy, education and gross domestic product.  相似文献   

7.
Abstract

In multivariate extreme value theory (MEVT), the focus is on analysis outside of the observable sampling zone, which implies that the region of interest is associated to high risk levels. This work provides tools to include directional notions into the MEVT, giving the opportunity to characterize the recently introduced directional multivariate quantiles (DMQ) at high levels. Then, an out-sample estimation method for these quantiles is given. A bootstrap procedure carries out the estimation of the tuning parameter in this multivariate framework and helps with the estimation of the DMQ. Asymptotic normality for the proposed estimator is provided and the methodology is illustrated with simulated data-sets. Finally, a real-life application to a financial case is also performed.  相似文献   

8.
The estimation of extreme conditional quantiles is an important issue in different scientific disciplines. Up to now, the extreme value literature focused mainly on estimation procedures based on independent and identically distributed samples. Our contribution is a two-step procedure for estimating extreme conditional quantiles. In a first step nonextreme conditional quantiles are estimated nonparametrically using a local version of [Koenker, R. and Bassett, G. (1978). Regression quantiles. Econometrica, 46, 33–50.] regression quantile methodology. Next, these nonparametric quantile estimates are used as analogues of univariate order statistics in procedures for extreme quantile estimation. The performance of the method is evaluated for both heavy tailed distributions and distributions with a finite right endpoint using a small sample simulation study. A bootstrap procedure is developed to guide in the selection of an optimal local bandwidth. Finally the procedure is illustrated in two case studies.  相似文献   

9.
This article generalizes the Monte Carlo Markov Chain (MCMC) algorithm, based on the Gibbs weighted Chinese restaurant (gWCR) process algorithm, for a class of kernel mixture of time series models over the Dirichlet process. This class of models is an extension of Lo’s (Ann. Stat. 12:351–357, 1984) kernel mixture model for independent observations. The kernel represents a known distribution of time series conditional on past time series and both present and past latent variables. The latent variables are independent samples from a Dirichlet process, which is a random discrete (almost surely) distribution. This class of models includes an infinite mixture of autoregressive processes and an infinite mixture of generalized autoregressive conditional heteroskedasticity (GARCH) processes.  相似文献   

10.
《Econometric Reviews》2012,31(1):27-53
Abstract

Transformed diffusions (TDs) have become increasingly popular in financial modeling for their model flexibility and tractability. While existing TD models are predominately one-factor models, empirical evidence often prefers models with multiple factors. We propose a novel distribution-driven nonlinear multifactor TD model with latent components. Our model is a transformation of a underlying multivariate Ornstein–Uhlenbeck (MVOU) process, where the transformation function is endogenously specified by a flexible parametric stationary distribution of the observed variable. Computationally efficient exact likelihood inference can be implemented for our model using a modified Kalman filter algorithm and the transformed affine structure also allows us to price derivatives in semi-closed form. We compare the proposed multifactor model with existing TD models for modeling VIX and pricing VIX futures. Our results show that the proposed model outperforms all existing TD models both in the sample and out of the sample consistently across all categories and scenarios of our comparison.  相似文献   

11.
ABSTRACT

Latent variable modeling is commonly used in behavioral, social, and medical science research. The models used in such analysis relate all observed variables to latent common factors. In many applications, the observations are highly non normal or discrete, e.g., polytomous responses or counts. The existing approaches for non normal observations can be considered lacking in several aspects, especially for multi-group samples situations. We propose a generalized linear model approach for multi-sample latent variable analysis that can handle a broad class of non normal and discrete observations, and that furnishes meaningful interpretation and inference in multi-group studies through maximum likelihood analysis. A Monte Carlo EM algorithm is proposed for parameter estimation. The convergence assessment and standard error estimation is addressed. Simulation studies are reported to show the usefulness of the our approach. An example from a substance abuse prevention study is also presented.  相似文献   

12.
Abstract

This paper considers an extension of the classical discrete time risk model for which the claim numbers are assumed to be temporal dependence and overdispersion. The risk model proposed is based on the first-order integer-valued autoregressive (INAR(1)) process with discrete compound Poisson distributed innovations. The explicit expression for the moment generating function of the discounted aggregate claim amount is derived. Some numerical examples are provided to illustrate the impacts of dependence and overdispersion on related quantities such as the stop-loss premium, the value at risk and the tail value at risk.  相似文献   

13.
ABSTRACT

In many clinical studies, patients are followed over time with their responses measured longitudinally. Using mixed model theory, one can characterize these data using a wide array of across subject models. A state-space representation of the mixed effects model and use of the Kalman filter allows one to have great flexibility in choosing the within error correlation structure even in the presence of missing or unequally spaced observations. Furthermore, using the state-space approach, one can avoid inverting large matrices resulting in efficient computation. The approach also allows one to make detailed inference about the error correlation structure. We consider a bivariate situation where the longitudinal responses are unequally spaced and assume that the within subject errors follows a continuous first-order autoregressive (CAR(1)) structure. Since a large number of nonlinear parameters need to be estimated, the modeling strategy and numerical techniques are critical in the process. We developed both a Visual Fortran® and a SAS® program for modeling such data. A simulation study was conducted to investigate the robustness of the model assumptions. We also use data from a psychiatric study to demonstrate our model fitting procedure.  相似文献   

14.
Abstract

In this paper, we propose a discrete-time risk model with the claim number following an integer-valued autoregressive conditional heteroscedasticity (ARCH) process with Poisson deviates. In this model, the current claim number depends on the previous observations. Within this framework, the equation for finding the adjustment coefficient is derived. Numerical studies are also carried out to examine the impact of the Poisson ARCH dependence structure on the ruin probability.  相似文献   

15.
We develop two Bayesian generalizations of the Poisson integer-valued autoregressive model. The AdINAR(1) model accounts for overdispersed data by means of an innovation process whose marginal distributions are finite mixtures, while the DP-INAR(1) model is a hierarchical extension involving a Dirichlet process, which is capable of modeling a latent pattern of heterogeneity in the distribution of the innovations rates. The probabilistic forecasting capabilities of both models are put to test in the analysis of crime data in Pittsburgh, with favorable results.  相似文献   

16.
ABSTRACT

In fitting a power-law process, we show that the construction of the empirical recurrence rate time series either simplifies the modeling task, or liberates a point process restrained by a key parametric model assumption such as the monotonicity requirement of the intensity function. The technique can be applied to seasonal events occurring in spurts or clusters, because the autoregressive integrated moving average (ARIMA) procedure provides a comprehensive set of tools with great flexibility. Essentially, we consolidate two of the most powerful modeling tools for the stochastic process and time series in the statistical literature to handle counts of events in a Poisson or Poisson-like process.  相似文献   

17.
It is well recognized that the generalized extreme value (GEV) distribution is widely used for any extreme events. This notion is based on the study of discrete choice behavior; however, there is a limit for predicting the distribution at ungauged sites. Hence, there have been studies on spatial dependence within extreme events in continuous space using recorded observations. We model the annual maximum daily rainfall data consisting of 25 locations for the period from 1982 to 2013. The spatial GEV model that is established under observations is assumed to be mutually independent because there is no spatial dependency between the stations. Furthermore, we divide the region into two regions for a better model fit and identify the best model for each region. We show that the regional spatial GEV model reflects the spatial pattern well compared with the spatial GEV model over the entire region as the local GEV distribution. The advantage of spatial extreme modeling is that more robust return levels and some indices of extreme rainfall can be obtained for observed stations as well as for locations without observed data. Thus, the model helps to determine the effects and assessment of vulnerability due to heavy rainfall in northeast Thailand.  相似文献   

18.

Causal quadrantal-type spatial ARMA(p, q) models with independent and identically distributed innovations are considered. In order to select the orders (p, q) of these models and estimate their autoregressive parameters, estimators of the autoregressive coefficients, derived from the extended Yule–Walker equations are defined. Consistency and asymptotic normality are obtained for these estimators. Then, spatial ARMA model identification is considered and simulation study is given.  相似文献   

19.
Motivated from extreme value (EV) analysis for large non-metallic inclusions in engineering steels and a real data set, the benefit of choosing a multivariate EV approach is discussed. An extensive simulation study shows that the common univariate setup may lead to a high proportion of mis-specifications of the true EV distribution, as well as that the statistical analysis is considerably improved when being based on the respective data of r largest observations, with r appropriately chosen. Results for several underlying distributions and various values of r are presented along with effects on estimators for the parameters of the generalized EV family of distributions.  相似文献   

20.
Cell lineage data consist of observations on quantitative characteristics of the descendants of an initial cell. The bifurcating autoregressive model has been previously used to model dependencies in cell lineage data by considering each line of descent to be a first order autoregressive process and allowing the environmental effects of sisters to be correlated. Here the basic bifurcating autoregressive model is modified to include random coefficients which allows for the relationship between mother and daughter cells to depend on environmental factors. Maximum likelihood inference under the assumption of multivariate normality is considered and the method is illustrated on several data sets.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号