首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
For the hierarchical Poisson and gamma model, we calculate the Bayes posterior estimator of the parameter of the Poisson distribution under Stein's loss function which penalizes gross overestimation and gross underestimation equally and the corresponding Posterior Expected Stein's Loss (PESL). We also obtain the Bayes posterior estimator of the parameter under the squared error loss and the corresponding PESL. Moreover, we obtain the empirical Bayes estimators of the parameter of the Poisson distribution with a conjugate gamma prior by two methods. In numerical simulations, we have illustrated: The two inequalities of the Bayes posterior estimators and the PESLs; the moment estimators and the Maximum Likelihood Estimators (MLEs) are consistent estimators of the hyperparameters; the goodness-of-fit of the model to the simulated data. The numerical results indicate that the MLEs are better than the moment estimators when estimating the hyperparameters. Finally, we exploit the attendance data on 314 high school juniors from two urban high schools to illustrate our theoretical studies.  相似文献   

2.
For binomial data analysis, many methods based on empirical Bayes interpretations have been developed, in which a variance‐stabilizing transformation and a normality assumption are usually required. To achieve the greatest model flexibility, we conduct nonparametric Bayesian inference for binomial data and employ a special nonparametric Bayesian prior—the Bernstein–Dirichlet process (BDP)—in the hierarchical Bayes model for the data. The BDP is a special Dirichlet process (DP) mixture based on beta distributions, and the posterior distribution resulting from it has a smooth density defined on [0, 1]. We examine two Markov chain Monte Carlo procedures for simulating from the resulting posterior distribution, and compare their convergence rates and computational efficiency. In contrast to existing results for posterior consistency based on direct observations, the posterior consistency of the BDP, given indirect binomial data, is established. We study shrinkage effects and the robustness of the BDP‐based posterior estimators in comparison with several other empirical and hierarchical Bayes estimators, and we illustrate through examples that the BDP‐based nonparametric Bayesian estimate is more robust to the sample variation and tends to have a smaller estimation error than those based on the DP prior. In certain settings, the new estimator can also beat Stein's estimator, Efron and Morris's limited‐translation estimator, and many other existing empirical Bayes estimators. The Canadian Journal of Statistics 40: 328–344; 2012 © 2012 Statistical Society of Canada  相似文献   

3.
For the variance parameter of the hierarchical normal and inverse gamma model, we analytically calculate the Bayes rule (estimator) with respect to a prior distribution IG (alpha, beta) under Stein's loss function. This estimator minimizes the posterior expected Stein's loss (PESL). We also analytically calculate the Bayes rule and the PESL under the squared error loss. Finally, the numerical simulations exemplify that the PESLs depend only on alpha and the number of observations. The Bayes rules and PESLs under Stein's loss are unanimously smaller than those under the squared error loss.  相似文献   

4.
Whereas large-sample properties of the estimators of survival distributions using censored data have been studied by many authors, exact results for small samples have been difficult to obtain. In this paper we obtain the exact expression for the ath moment (a > 0) of the Bayes estimator of survival distribution using the censored data under proportional hazard model. Using the exact expression we compute the exact mean, variance and MSE of the Bayes estimator. Also two estimators ofthe mean survival time based on the Kaplan-Meier estimator and the Bayes estimator are compared for small samples under proportional hazards.  相似文献   

5.
We estimate sib–sib correlation by maximizing the log-likelihood of a Kotz-type distribution. Using extensive simulations we conclude that estimating sib–sib correlation using the proposed method has many advantages. Results are illustrated on a real life data set due to Galton. Testing of hypothesis about this correlation is also discussed using the three likelihood based tests and a test based on Srivastava's estimator. It is concluded that score test derived using Kotz-type density performs the best.  相似文献   

6.
Abstract. The random x regression model is approached through the group of rotations of the eigenvectors for the x ‐covariance matrix together with scale transformations for each of the corresponding regression coefficients. The partial least squares model can be constructed from the orbits of this group. A generalization of Pitman's Theorem says that the best equivariant estimator under a group is given by the Bayes estimator with the group's invariant measure as the prior. A straightforward application of this theorem turns out to be impossible since the relevant invariant prior leads to a non‐defined posterior. Nevertheless we can devise an approximate scale group with a proper invariant prior leading to a well‐defined posterior distribution with a finite mean. This Bayes estimator is explored using Markov chain Monte Carlo technique. The estimator seems to require heavy computations, but can be argued to have several nice properties. It is also a valid estimator when p>n.  相似文献   

7.
Abstract. We study the Bayesian solution of a linear inverse problem in a separable Hilbert space setting with Gaussian prior and noise distribution. Our contribution is to propose a new Bayes estimator which is a linear and continuous estimator on the whole space and is stronger than the mean of the exact Gaussian posterior distribution which is only defined as a measurable linear transformation. Our estimator is the mean of a slightly modified posterior distribution called regularized posterior distribution. Frequentist consistency of our estimator and of the regularized posterior distribution is proved. A Monte Carlo study and an application to real data confirm good small‐sample properties of our procedure.  相似文献   

8.
In this paper, we consider the maximum likelihood and Bayes estimation of the scale parameter of the half-logistic distribution based on a multiply type II censored sample. However, the maximum likelihood estimator(MLE) and Bayes estimator do not exist in an explicit form for the scale parameter. We consider a simple method of deriving an explicit estimator by approximating the likelihood function and discuss the asymptotic variances of MLE and approximate MLE. Also, an approximation based on the Laplace approximation (Tierney & Kadane, 1986) is used to obtain the Bayes estimator. In order to compare the MLE, approximate MLE and Bayes estimates of the scale parameter, Monte Carlo simulation is used.  相似文献   

9.
Sampson (1976, 1978) has considered applications of the standard symmetric multivariate normal (SSMN) distribution and the estimation of its equi-correlation coefficient, ρ. Tests for ρ are considered here. The likelihood ratio test suffers from several theoretical and practical shortcomings. We propose the locally most powerful (LMP) test which is globally (one-sided) unbiased, very simple to compute and is based on the best natural unbiased estimator of ρ. Exact null and non-null distributions of the test statistic are presented and percentage points are given. Statistical curvature (Efron, 1975) indicates that its performance improves with mk (sample size × dimension) while exact power computations show that even for reasonably small values of mk the performance is quite encouraging. Recalling Brown's (1971) cautions we establish by local comparison with the LMP similar test for ρ in the SMN (Rao, 1973) distribution, that here the additional information on the mean and variance is quite worthwhile.  相似文献   

10.
In this article, we consider the Bayes and empirical Bayes problem of the current population mean of a finite population when the sample data is available from other similar (m-1) finite populations. We investigate a general class of linear estimators and obtain the optimal linear Bayes estimator of the finite population mean under a squared error loss function that considered the cost of sampling. The optimal linear Bayes estimator and the sample size are obtained as a function of the parameters of the prior distribution. The corresponding empirical Bayes estimates are obtained by replacing the unknown hyperparameters with their respective consistent estimates. A Monte Carlo study is conducted to evaluate the performance of the proposed empirical Bayes procedure.  相似文献   

11.
Abstract

For the restricted parameter space (0,1), we propose Zhang’s loss function which satisfies all the 7 properties for a good loss function on (0,1). We then calculate the Bayes rule (estimator), the posterior expectation, the integrated risk, and the Bayes risk of the parameter in (0,1) under Zhang’s loss function. We also calculate the usual Bayes estimator under the squared error loss function, and the Bayes estimator has been proved to underestimate the Bayes estimator under Zhang’s loss function. Finally, the numerical simulations and a real data example of some monthly magazine exposure data exemplify our theoretical studies of two size relationships about the Bayes estimators and the Posterior Expected Zhang’s Losses (PEZLs).  相似文献   

12.
A new class of Bayesian estimators for a proportion in multistage binomial designs is considered. Priors belong to the beta-J distribution family, which is derived from the Fisher information associated with the design. The transposition of the beta parameters of the Haldane and the uniform priors in fixed binomial experiments into the beta-J distribution yields bias-corrected versions of these priors in multistage designs. We show that the estimator of the posterior mean based on the corrected Haldane prior and the estimator of the posterior mode based on the corrected uniform prior have good frequentist properties. An easy-to-use approximation of the estimator of the posterior mode is provided. The new Bayesian estimators are compared to Whitehead's and the uniformly minimum variance estimators through several multistage designs. Last, the bias of the estimator of the posterior mode is derived for a particular case.  相似文献   

13.
Random effects model can account for the lack of fitting a regression model and increase precision of estimating area‐level means. However, in case that the synthetic mean provides accurate estimates, the prior distribution may inflate an estimation error. Thus, it is desirable to consider the uncertain prior distribution, which is expressed as the mixture of a one‐point distribution and a proper prior distribution. In this paper, we develop an empirical Bayes approach for estimating area‐level means, using the uncertain prior distribution in the context of a natural exponential family, which we call the empirical uncertain Bayes (EUB) method. The regression model considered in this paper includes the Poisson‐gamma and the binomial‐beta, and the normal‐normal (Fay–Herriot) model, which are typically used in small area estimation. We obtain the estimators of hyperparameters based on the marginal likelihood by using a well‐known expectation‐maximization algorithm and propose the EUB estimators of area means. For risk evaluation of the EUB estimator, we derive a second‐order unbiased estimator of a conditional mean squared error by using some techniques of numerical calculation. Through simulation studies and real data applications, we evaluate a performance of the EUB estimator and compare it with the usual empirical Bayes estimator.  相似文献   

14.
Let X have a gamma distribution with known shape parameter θr;aL and unknown scale parameter θ. Suppose it is known that θ ≥ a for some known a > 0. An admissible minimax estimator for scale-invariant squared-error loss is presented. This estimator is the pointwise limit of a sequence of Bayes estimators. Further, the class of truncated linear estimators C = {θρρ(x) = max(a, ρ), ρ > 0} is studied. It is shown that each θρ is inadmissible and that exactly one of them is minimax. Finally, it is shown that Katz's [Ann. Math. Statist., 32, 136–142 (1961)] estimator of θ is not minimax for our loss function. Some further properties of and comparisons among these estimators are also presented.  相似文献   

15.
ABSTRACT

In this paper, the stress-strength reliability, R, is estimated in type II censored samples from Pareto distributions. The classical inference includes obtaining the maximum likelihood estimator, an exact confidence interval, and the confidence intervals based on Wald and signed log-likelihood ratio statistics. Bayesian inference includes obtaining Bayes estimator, equi-tailed credible interval, and highest posterior density (HPD) interval given both informative and non-informative prior distributions. Bayes estimator of R is obtained using four methods: Lindley's approximation, Tierney-Kadane method, Monte Carlo integration, and MCMC. Also, we compare the proposed methods by simulation study and provide a real example to illustrate them.  相似文献   

16.
We consider the problem of estimating the common regression matrix of two GMANOVA models with different unknown covariance matrices under certain type of loss functions which include a weighted quadratic loss function as a special case. We consider a class of estimators, which contains the Graybill–Deal-type estimator proposed by Sugiura and Kubokawa (Ann. Inst. Statist. Math. 40 (1988) 119), and we give its risk representation via Kubokawa and Srivastava's (Ann. Statist. 27 (1999) 600; J. Multivariate Anal. 76 (2001) 138) identities when the error matrices follow the elliptically contoured distributions. Using the method similar to an approximate minimization of the unbiased risk estimate due to Stein (Studies in the Statistical Theory of Estimation, vol. 74, Nauka, Leningrad, 1977, p. 4), we obtain an alternative estimator to the Graybill–Deal-type estimator which was given under the normality assumption. However, it seems difficult to evaluate the risk of our proposed estimator analytically because of complex nature of its risk function. Instead, we conduct a Monte-Carlo simulation to evaluate the performance of our proposed estimator. The results indicate that our proposed estimator compares favorably with the Graybill–Deal-type estimator.  相似文献   

17.
In this paper, the statistical inference of the unknown parameters of a two-parameter inverse Weibull (IW) distribution based on the progressive type-II censored sample has been considered. The maximum likelihood estimators (MLEs) cannot be obtained in explicit forms, hence the approximate MLEs are proposed, which are in explicit forms. The Bayes and generalized Bayes estimators for the IW parameters and the reliability function based on the squared error and Linex loss functions are provided. The Bayes and generalized Bayes estimators cannot be obtained explicitly, hence Lindley's approximation is used to obtain the Bayes and generalized Bayes estimators. Furthermore, the highest posterior density credible intervals of the unknown parameters based on Gibbs sampling technique are computed, and using an optimality criterion the optimal censoring scheme has been suggested. Simulation experiments are performed to see the effectiveness of the different estimators. Finally, two data sets have been analysed for illustrative purposes.  相似文献   

18.
ABSTRACT

In this paper, under Type-I progressive hybrid censoring sample, we obtain maximum likelihood estimator of unknown parameter when the parent distribution belongs to proportional hazard rate family. We derive the conditional probability density function of the maximum likelihood estimator using moment-generating function technique. The exact confidence interval is obtained and compared by conducting a Monte Carlo simulation study for burr Type XII distribution. Finally, we obtain the Bayes and posterior regret gamma minimax estimates of the parameter under a precautionary loss function with precautionary index k = 2 and compare their behavior via a Monte Carlo simulation study.  相似文献   

19.
ABSTRACT

The paper deals with Bayes estimation of the exponentiated Weibull shape parameters under linex loss function when independent non-informative type of priors are available for the parameters. Generalized maximum likelihood estimators have also been obtained. Performances of the proposed Bayes estimator, generalized maximum likelihood estimators, posterior mean (i.e., Bayes estimator under squared error loss function) and maximum likelihood estimators have been studied on the basis of their risks under linex loss function. The comparison is based on a simulation study because the expressions for risk functions of these estimators cannot be obtained in nice closed forms.  相似文献   

20.
In this article, maximum likelihood estimator (MLE) as well as Bayes estimator of traffic intensity (ρ) in an M/M/1/∞ queueing model in equilibrium based on number of customers present in the queue at successive departure epochs have been worked out. Estimates of some functions of ρ which provide measures of effectiveness of the queue have also been derived. A comprehensive simulation study starting with the transition probability matrix has been carried out in the last section.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号