共查询到20条相似文献,搜索用时 15 毫秒
1.
In this article, we consider the product-limit quantile estimator of an unknown quantile function under a censored dependent model. This is a parallel problem to the estimation of the unknown distribution function by the product-limit estimator under the same model. Simultaneous strong Gaussian approximations of the product-limit process and product-limit quantile process are constructed with rate O[(log n)?λ] for some λ > 0. The strong Gaussian approximation of the product-limit process is then applied to derive the laws of the iterated logarithm for product-limit process. 相似文献
2.
3.
4.
Some Asymptotic Results of Kernel Density Estimators Under Random Left-Truncation and Dependent Data
Problems with truncated data arise frequently in survival analyses and reliability applications. The estimation of the density function of the lifetimes is often of interest. In this article, the estimation of density function by the kernel method is considered, when truncated data are showing some kind of dependence. We apply the strong Gaussian approximation technique to study the strong uniform consistency for kernel estimators of the density function under a truncated dependent model. We also apply the strong approximation results to study the integrated square error properties of the kernel density estimators under the truncated dependent scheme. 相似文献
5.
6.
Hyo-Il Park 《统计学通讯:模拟与计算》2015,44(7):1735-1749
In this study, we propose nonparametric tests using the several quantile statistics simultaneously for the right censored data. First of all, we consider statistics of the quadratic form with estimated covariance matrices. Then we derive the limiting distribution using the large sample approximation theory. Also we consider different forms of statistics such as the maximal and summing types with their limiting distributions. Then we illustrate our procedure with examples and compare performance among tests with empirical powers through a simulation study. Also we comment briefly on some interesting features including re-sampling methods as concluding remarks. Finally in Appendices, we provide proofs for the theoretic results needed for the derivation of the limiting distributions of the proposed test statistics. 相似文献
7.
In some long-term studies, a series of dependent and possibly censored failure times may be observed. Suppose that the failure times have a common continuous distribution function F. A popular stochastic measure of the distance between the density function f of the failure times and its kernel estimate f n is the integrated square error(ISE). In this article, we derive a central limit theorem for the integrated square error of the kernel density estimators under a censored dependent model. 相似文献
8.
AbstractLet (T, C, X) be a vector of random variables (rvs) where T, C, and X are the interest variable, a right censoring rv, and a covariate, respectively. In this paper, we study the kernel conditional mode estimation when the covariate takes values in an infinite dimensional space and is α-mixing. Under some regularity conditions, the almost complete convergence of the estimate with rates is established. 相似文献
9.
We consider the estimation of the conditional quantile when the interest variable is subject to left truncation. Under regularity conditions, it is shown that the kernel estimate of the conditional quantile is asymptotically normally distributed, when the data exhibit some kind of dependence. We use asymptotic normality to construct confidence bands for predictors based on the kernel estimate of the conditional median. 相似文献
10.
Walid Horrigue 《统计学通讯:理论与方法》2013,42(20):4307-4332
In this paper we study a smooth estimator of the regression quantile function in the censorship model when the covariates take values in some abstract function space. The main goal of this paper is to establish the asymptotic normality of the kernel estimator of the regression quantile, under α-mixing condition and, on the concentration properties on small balls probability measure of the functional regressors. Some applications and particular cases are studied. This study can be applied in time series analysis to the prediction and building confidence bands. Some simulations are drawn to lend further support to our theoretical results and to compare the quality of behavior of the estimator for finite samples with different rates of censoring and sizes. 相似文献
11.
Djamal LOUANI 《统计学通讯:理论与方法》2013,42(12):2909-2924
In this paper, we study asymptotic normality of the kernel estimators of the density function and its derivatives as well as the mode in the randomly right censorship model. The mode estimator is defined as the random variable that maximizes the kernel density estimator. Our results are stated under some suitable conditions upon the kernel function, the smoothing parameter and both distributions functions that appear in this model. Here, the Kaplan–Meier estimator of the distribution function is used to build the estimates. We carry out a simulation study which shows how good the normality works. 相似文献
12.
ABSTRACTWe consider the asymptotic properties for the moment estimators in Rayleigh distribution with two parameters. The law of the iterated logarithm for the estimators can be obtained. Moreover, we can give a simple proof of the asymptotic normality which has been obtained by Li and Li (2012). 相似文献
13.
For left-truncated and right-censored data, the technique proposed by Brookmeyer and Crowley (1982) is extended to construct a point-wise confidence interval for median residual lifetime. This procedure is computationally simpler than the score type confidence interval in Jeong et al. (2008) and empirical likelihood ratio confidence interval in Zhou and Jeong (2011). Further, transformations of the estimator are applied to improve the approximation to the asymptotic distribution for small sample sizes. A simulation study is conducted to investigate the accuracy of these confidence intervals and the implementation of these confidence intervals to two real datasets is illustrated. 相似文献
14.
15.
We establish a strong invariance principle for triangular arrays of a broad class of weakly dependent real random variables. We approximate the original array of dependent random variables by an array of rowwise independent standard normal variables. We demonstrate the functional central limit theorem and law of the iterated logarithm for the approximating array and thereby extend these results to the original array. Among several examples, we look at arrays used in describing the rate of convergence of estimators in regression analysis. 相似文献
16.
17.
Ke-Ang Fu 《统计学通讯:理论与方法》2013,42(18):3207-3217
18.
M'hamed Ezzahrioui 《统计学通讯:理论与方法》2013,42(17):2735-2759
We consider the estimation of the conditional quantile function when the covariates take values in some abstract function space. The main goal of this article is to establish the almost complete convergence and the asymptotic normality of the kernel estimator of the conditional quantile under the α-mixing assumption and on the concentration properties on small balls of the probability measure of the functional regressors. Some applications and particular cases are studied. This approach can be applied in time series analysis to the prediction and building of confidence bands. We illustrate our methodology with El Niño data. 相似文献
19.
In this article, we study the asymptotic properties of the kernel estimator of the mode and density function when the data are twice censored. More specifically, we first establish a strong uniform consistency over a compact set with a rate of the kernel density estimator and then we give the consistency with rate and asymptotic normality for the kernel mode estimator. An application to confidence bands is given. 相似文献
20.
C.K. Mustafi 《统计学通讯:理论与方法》2013,42(8):3087-3093
This article studies the weak convergence of the residual median process (i) when the observations follow a strictly stationary ø-mixing process and (ii) when hte observations are randomly censored. In both these cased the residual median prodeas converges weakly to a gaussian process. 相似文献