首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
This article aims at proposing a new type of empirical likelihood testing procedure based on the Wilks theorem and imputed value in censored partial linear model. The present study is mainly designed to use empirical likelihood (EL) method based on synthetic dependent data, and the result can not be applied directly due to the weights in it. In this article, a censored empirical log-likelihood ratio is introduced to tackle this problem. Particularly, we demonstrate that its limiting distribution is a standard chi-squared distribution with freedom of one. This method is used to calculate the p-value and construct the confidence interval. Some simulation studies are conducted to highlight the performance of the proposed EL method, and the results show that it performs well. Finally, an illustration is given using the Stanford Heart Transplant data.  相似文献   

2.
In this article, we propose a new empirical likelihood method for linear regression analysis with a right censored response variable. The method is based on the synthetic data approach for censored linear regression analysis. A log-empirical likelihood ratio test statistic for the entire regression coefficients vector is developed and we show that it converges to a standard chi-squared distribution. The proposed method can also be used to make inferences about linear combinations of the regression coefficients. Moreover, the proposed empirical likelihood ratio provides a way to combine different normal equations derived from various synthetic response variables. Maximizing this empirical likelihood ratio yields a maximum empirical likelihood estimator which is asymptotically equivalent to the solution of the estimating equation that are optimal linear combination of the original normal equations. It improves the estimation efficiency. The method is illustrated by some Monte Carlo simulation studies as well as a real example.  相似文献   

3.
This paper develops a novel weighted composite quantile regression (CQR) method for estimation of a linear model when some covariates are missing at random and the probability for missingness mechanism can be modelled parametrically. By incorporating the unbiased estimating equations of incomplete data into empirical likelihood (EL), we obtain the EL-based weights, and then re-adjust the inverse probability weighted CQR for estimating the vector of regression coefficients. Theoretical results show that the proposed method can achieve semiparametric efficiency if the selection probability function is correctly specified, therefore the EL weighted CQR is more efficient than the inverse probability weighted CQR. Besides, our algorithm is computationally simple and easy to implement. Simulation studies are conducted to examine the finite sample performance of the proposed procedures. Finally, we apply the new method to analyse the US news College data.  相似文献   

4.
Adjusted empirical likelihood (AEL) is a method to improve the performance of the empirical likelihood (EL) particularly in the construction of the confidence interval based on completely observed data. In this paper, we extend AEL approach to the analysis of right censored data by adopting an influence function method. The main results include that the adjusted log-likelihood ratio is asymptotically Chi-squared distributed. Simulation results indicate that the proposed AEL-based confidence intervals perform better compared with normality-based or EL-based confidence intervals specifically for small sample size within the right-censoring setting. The proposed method is illustrated by analysis of survival time of patients after operation for spinal tumors.  相似文献   

5.
Kendall and Gehan estimating functions are commonly used to estimate the regression parameter in accelerated failure time model with censored observations in survival analysis. In this paper, we apply the jackknife empirical likelihood method to overcome the computation difficulty about interval estimation. A Wilks’ theorem of jackknife empirical likelihood for U-statistic type estimating equations is established, which is used to construct the confidence intervals for the regression parameter. We carry out an extensive simulation study to compare the Wald-type procedure, the empirical likelihood method, and the jackknife empirical likelihood method. The proposed jackknife empirical likelihood method has a better performance than the existing methods. We also use a real data set to compare the proposed methods.  相似文献   

6.
This article proposes the maximum likelihood estimates based on bare bones particle swarm optimization (BBPSO) algorithm for estimating the parameters of Weibull distribution with censored data, which is widely used in lifetime data analysis. This approach can produce more accuracy of the parameter estimation for the Weibull distribution. Additionally, the confidence intervals for the estimators are obtained. The simulation results show that the BB PSO algorithm outperforms the Newton–Raphson method in most cases in terms of bias, root mean square of errors, and coverage rate. Two examples are used to demonstrate the performance of the proposed approach. The results show that the maximum likelihood estimates via BBPSO algorithm perform well for estimating the Weibull parameters with censored data.  相似文献   

7.
The linear regression model for right censored data, also known as the accelerated failure time model using the logarithm of survival time as the response variable, is a useful alternative to the Cox proportional hazards model. Empirical likelihood as a non‐parametric approach has been demonstrated to have many desirable merits thanks to its robustness against model misspecification. However, the linear regression model with right censored data cannot directly benefit from the empirical likelihood for inferences mainly because of dependent elements in estimating equations of the conventional approach. In this paper, we propose an empirical likelihood approach with a new estimating equation for linear regression with right censored data. A nested coordinate algorithm with majorization is used for solving the optimization problems with non‐differentiable objective function. We show that the Wilks' theorem holds for the new empirical likelihood. We also consider the variable selection problem with empirical likelihood when the number of predictors can be large. Because the new estimating equation is non‐differentiable, a quadratic approximation is applied to study the asymptotic properties of penalized empirical likelihood. We prove the oracle properties and evaluate the properties with simulated data. We apply our method to a Surveillance, Epidemiology, and End Results small intestine cancer dataset.  相似文献   

8.
The non-parametric maximum likelihood estimator (NPMLE) of the distribution function with doubly censored data can be computed using the self-consistent algorithm (Turnbull, 1974). We extend the self-consistent algorithm to include a constraint on the NPMLE. We then show how to construct confidence intervals and test hypotheses based on the NPMLE via the empirical likelihood ratio. Finally, we present some numerical comparisons of the performance of the above method with another method that makes use of the influence functions.  相似文献   

9.
In this paper, we apply empirical likelihood for two-sample problems with growing high dimensionality. Our results are demonstrated for constructing confidence regions for the difference of the means of two p-dimensional samples and the difference in value between coefficients of two p-dimensional sample linear model. We show that empirical likelihood based estimator has the efficient property. That is, as p → ∞ for high-dimensional data, the limit distribution of the EL ratio statistic for the difference of the means of two samples and the difference in value between coefficients of two-sample linear model is asymptotic normal distribution. Furthermore, empirical likelihood (EL) gives efficient estimator for regression coefficients in linear models, and can be as efficient as a parametric approach. The performance of the proposed method is illustrated via numerical simulations.  相似文献   

10.
In this paper, we consider the problem of estimating the scale parameter of the inverse Rayleigh distribution based on general progressively Type-II censored samples and progressively Type-II censored samples. The pivotal quantity method is used to derive the estimator of the scale parameter. Besides, considering that the maximum likelihood estimator is tough to obtain for this distribution, we derive an explicit estimator of the scale parameter by approximating the likelihood equation with Taylor expansion. The interval estimation is also studied based on pivotal inference. Then we conduct Monte Carlo simulations and compare the performance of different estimators. We demonstrate that the pivotal inference is simpler and more effective. The further application of the pivotal quantity method is also discussed theoretically. Finally, two real data sets are analyzed using our methods.  相似文献   

11.
In this paper, we investigate empirical likelihood (EL) inferences via weighted composite quantile regression for non linear models. Under regularity conditions, we establish that the proposed empirical log-likelihood ratio is asymptotically chi-squared, and then the confidence intervals for the regression coefficients are constructed. The proposed method avoids estimating the unknown error density function involved in the asymptotic covariance matrix of the estimators. Simulations suggest that the proposed EL procedure is more efficient and robust, and a real data analysis is used to illustrate the performance.  相似文献   

12.
The main purpose of this paper is to introduce first a new family of empirical test statistics for testing a simple null hypothesis when the vector of parameters of interest is defined through a specific set of unbiased estimating functions. This family of test statistics is based on a distance between two probability vectors, with the first probability vector obtained by maximizing the empirical likelihood (EL) on the vector of parameters, and the second vector defined from the fixed vector of parameters under the simple null hypothesis. The distance considered for this purpose is the phi-divergence measure. The asymptotic distribution is then derived for this family of test statistics. The proposed methodology is illustrated through the well-known data of Newcomb's measurements on the passage time for light. A simulation study is carried out to compare its performance with that of the EL ratio test when confidence intervals are constructed based on the respective statistics for small sample sizes. The results suggest that the ‘empirical modified likelihood ratio test statistic’ provides a competitive alternative to the EL ratio test statistic, and is also more robust than the EL ratio test statistic in the presence of contamination in the data. Finally, we propose empirical phi-divergence test statistics for testing a composite null hypothesis and present some asymptotic as well as simulation results for evaluating the performance of these test procedures.  相似文献   

13.
In this paper, we introduce the empirical likelihood (EL) method to longitudinal studies. By considering the dependence within subjects in the auxiliary random vectors, we propose a new weighted empirical likelihood (WEL) inference for generalized linear models with longitudinal data. We show that the weighted empirical likelihood ratio always follows an asymptotically standard chi-squared distribution no matter which working weight matrix that we have chosen, but a well chosen working weight matrix can improve the efficiency of statistical inference. Simulations are conducted to demonstrate the accuracy and efficiency of our proposed WEL method, and a real data set is used to illustrate the proposed method.  相似文献   

14.
15.
In this article, we consider statistical inference for longitudinal partial linear models when the response variable is sometimes missing with missingness probability depending on the covariate that is measured with error. A generalized empirical likelihood (GEL) method is proposed by combining correction attenuation and quadratic inference functions. The method that takes into consideration the correlation within groups is used to estimate the regression coefficients. Furthermore, residual-adjusted empirical likelihood (EL) is employed for estimating the baseline function so that undersmoothing is avoided. The empirical log-likelihood ratios are proven to be asymptotically Chi-squared, and the corresponding confidence regions for the parameters of interest are then constructed. Compared with methods based on NAs, the GEL does not require consistent estimators for the asymptotic variance and bias. The numerical study is conducted to compare the performance of the EL and the normal approximation-based method, and a real example is analysed.  相似文献   

16.
In this article, we apply the empirical likelihood method to make inference on the bivariate survival function of paired failure times by estimating the survival function of censored time with the Kaplan–Meier estimator. Adjusted empirical likelihood (AEL) confidence intervals for the bivariate survival function are developed. We conduct a simulation study to compare the proposed AEL method with other methods. The simulation study shows the proposed AEL method has better performance than other existing methods. We illustrate the proposed method by analyzing the skin graft data.  相似文献   

17.
In this work, we consider empirical likelihood inference for general transformation models with right censored data. The models are a class of flexible semiparametric survival models and include many popular survival models as their special cases. Based on the marginal likelihood function, we define an empirical likelihood ratio statistic. Under some regularity conditions, we show that the empirical likelihood ratio statistic asymptotically follows a standard chi-squared distribution. Through some simulation studies and a real data application, we show that our proposed procedure can work fairly well even for relatively small sample size and high censoring.  相似文献   

18.
Value at risk (VaR) and expected shortfall (ES) are widely used risk measures of the risk of loss on a specific portfolio of financial assets. Adjusted empirical likelihood (AEL) is an important non parametric likelihood method which is developed from empirical likelihood (EL). It can overcome the limitation of convex hull problems in EL. In this paper, we use AEL method to estimate confidence region for VaR and ES. Theoretically, we find that AEL has the same large sample statistical properties as EL, and guarantees solution to the estimating equations in EL. In addition, simulation results indicate that the coverage probabilities of the new confidence regions are higher than that of the original EL with the same level. These results show that the AEL estimation for VaR and ES deserves to recommend for the real applications.  相似文献   

19.
This paper proposes a semi-parametric modelling and estimating method for analysing censored survival data. The proposed method uses the empirical likelihood function to describe the information in data, and formulates estimating equations to incorporate knowledge of the underlying distribution and regression structure. The method is more flexible than the traditional methods such as the parametric maximum likelihood estimation (MLE), Cox's (1972) proportional hazards model, accelerated life test model, quasi-likelihood (Wedderburn, 1974) and generalized estimating equations (Liang & Zeger, 1986). This paper shows the existence and uniqueness of the proposed semi-parametric maximum likelihood estimates (SMLE) with estimating equations. The method is validated with known cases studied in the literature. Several finite sample simulation and large sample efficiency studies indicate that when the sample size is larger than 100 the SMLE is compatible with the parametric MLE; and in all case studies, the SMLE is about 15% better than the parametric MLE with a mis-specified underlying distribution.  相似文献   

20.
Abstract.  The Cox model with time-dependent coefficients has been studied by a number of authors recently. In this paper, we develop empirical likelihood (EL) pointwise confidence regions for the time-dependent regression coefficients via local partial likelihood smoothing. The EL simultaneous confidence bands for a linear combination of the coefficients are also derived based on the strong approximation methods. The EL ratio is formulated through the local partial log-likelihood for the regression coefficient functions. Our numerical studies indicate that the EL pointwise/simultaneous confidence regions/bands have satisfactory finite sample performances. Compared with the confidence regions derived directly based on the asymptotic normal distribution of the local constant estimator, the EL confidence regions are overall tighter and can better capture the curvature of the underlying regression coefficient functions. Two data sets, the gastric cancer data and the Mayo Clinic primary biliary cirrhosis data, are analysed using the proposed method.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号