首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 578 毫秒
1.
The heteroscedasticity consistent covariance matrix estimators are commonly used for the testing of regression coefficients when error terms of regression model are heteroscedastic. These estimators are based on the residuals obtained from the method of ordinary least squares and this method yields inefficient estimators in the presence of heteroscedasticity. It is usual practice to use estimated weighted least squares method or some adaptive methods to find efficient estimates of the regression parameters when the form of heteroscedasticity is unknown. But HCCM estimators are seldom derived from such efficient estimators for testing purposes in the available literature. The current article addresses the same concern and presents the weighted versions of HCCM estimators. Our numerical work uncovers the performance of these estimators and their finite sample properties in terms of interval estimation and null rejection rate.  相似文献   

2.
It is common for a linear regression model that the error terms display some form of heteroscedasticity and at the same time, the regressors are also linearly correlated. Both of these problems have serious impact on the ordinary least squares (OLS) estimates. In the presence of heteroscedasticity, the OLS estimator becomes inefficient and the similar adverse impact can also be found on the ridge regression estimator that is alternatively used to cope with the problem of multicollinearity. In the available literature, the adaptive estimator has been established to be more efficient than the OLS estimator when there is heteroscedasticity of unknown form. The present article proposes the similar adaptation for the ridge regression setting with an attempt to have more efficient estimator. Our numerical results, based on the Monte Carlo simulations, provide very attractive performance of the proposed estimator in terms of efficiency. Three different existing methods have been used for the selection of biasing parameter. Moreover, three different distributions of the error term have been studied to evaluate the proposed estimator and these are normal, Student's t and F distribution.  相似文献   

3.
In this article a class of restricted minimum bias linear estimators of the vector of unknown regression coefficients when multicollinearity among the columns of the design matrix exists, is obtained. The ordinary ridge regression, principal components and shrinkage estimators are members of this class. Moreover, our ap-proach can be used to improve, in some sense, certain classes of generalized ridge and shrinkage estimators of the vector of un-known parameters in linear models.  相似文献   

4.
The ordinary least-square estimators for linear regression analysis with multicollinearity and outliers lead to unfavorable results. In this article, we propose a new robust modified ridge M-estimator (MRME) based on M-estimator (ME) to deal with the combined problem resulting from multicollinearity and outliers in the y-direction. MRME outperforms modified ridge estimator, robust ridge estimator and ME, according to mean squares error criterion. Furthermore, a numerical example and a Monte Carlo simulation experiment are given to illustrate some of the theoretical results.  相似文献   

5.
It is common for linear regression models that the error variances are not the same for all observations and there are some high leverage data points. In such situations, the available literature advocates the use of heteroscedasticity consistent covariance matrix estimators (HCCME) for the testing of regression coefficients. Primarily, such estimators are based on the residuals derived from the ordinary least squares (OLS) estimator that itself can be seriously inefficient in the presence of heteroscedasticity. To get efficient estimation, many efficient estimators, namely the adaptive estimators are available but their performance has not been evaluated yet when the problem of heteroscedasticity is accompanied with the presence of high leverage data. In this article, the presence of high leverage data is taken into account to evaluate the performance of the adaptive estimator in terms of efficiency. Furthermore, our numerical work also evaluates the performance of the robust standard errors based on this efficient estimator in terms of interval estimation and null rejection rate (NRR).  相似文献   

6.
In the multiple linear regression analysis, the ridge regression estimator and the Liu estimator are often used to address multicollinearity. Besides multicollinearity, outliers are also a problem in the multiple linear regression analysis. We propose new biased estimators based on the least trimmed squares (LTS) ridge estimator and the LTS Liu estimator in the case of the presence of both outliers and multicollinearity. For this purpose, a simulation study is conducted in order to see the difference between the robust ridge estimator and the robust Liu estimator in terms of their effectiveness; the mean square error. In our simulations, the behavior of the new biased estimators is examined for types of outliers: X-space outlier, Y-space outlier, and X-and Y-space outlier. The results for a number of different illustrative cases are presented. This paper also provides the results for the robust ridge regression and robust Liu estimators based on a real-life data set combining the problem of multicollinearity and outliers.  相似文献   

7.
The problem of estimation of the regression coefficients in a multiple regression model is considered under multicollinearity situation when it is suspected that the regression coefficients may be restricted to a subspace. We present the estimators of the regression coefficients combining the idea of preliminary test and ridge regression methodology. Accordingly, we consider three estimators, namely, the unrestricted ridge regression estimator (URRE), the restricted ridge regression estimator (RRRE), and finally, the preliminary test ridge regression estimator (PTRRE). The biases, variancematrices and mean square errors (mse) of the estimators are derived and compared with the usual estimators. Regions of optimality of the estimators are determined by studying the mse criterion. The conditions of superiority of the estimators over the traditional estimators as in Saleh and Han (1990) and Ali and Saleh (1991) have also been discussed.  相似文献   

8.
Efficient inference for regression models requires that the heteroscedasticity be taken into account. We consider statistical inference under heteroscedasticity in a semiparametric measurement error regression model, in which some covariates are measured with errors. This paper has multiple components. First, we propose a new method for testing the heteroscedasticity. The advantages of the proposed method over the existing ones are that it does not need any nonparametric estimation and does not involve any mismeasured variables. Second, we propose a new two-step estimator for the error variances if there is heteroscedasticity. Finally, we propose a weighted estimating equation-based estimator (WEEBE) for the regression coefficients and establish its asymptotic properties. Compared with existing estimators, the proposed WEEBE is asymptotically more efficient, avoids undersmoothing the regressor functions and requires less restrictions on the observed regressors. Simulation studies show that the proposed test procedure and estimators have nice finite sample performance. A real data set is used to illustrate the utility of our proposed methods.  相似文献   

9.
It is well-known in the literature on multicollinearity that one of the major consequences of multicollinearity on the ordinary least squares estimator is that the estimator produces large sampling variances, which in turn might inappropriately lead to exclusion of otherwise significant coefficients from the model. To circumvent this problem, two accepted estimation procedures which are often suggested are the restricted least squares method and the ridge regression method. While the former leads to a reduction in the sampling variance of the estimator, the later ensures a smaller mean square error value for the estimator. In this paper we have proposed a new estimator which is based on a criterion that combines the ideas underlying these two estimators. The standard properties of this new estimator have been studied in the paper. It has also been shown that this estimator is superior to both the restricted least squares as well as the ordinary ridge regression estimators by the criterion of mean sauare error of the estimator of the regression coefficients when the restrictions are indeed correct. The conditions for superiority of this estimator over the other two have also been derived for the situation when the restrictions are not correct.  相似文献   

10.
In this article, the stochastic restricted almost unbiased ridge regression estimator and stochastic restricted almost unbiased Liu estimator are proposed to overcome the well-known multicollinearity problem in linear regression model. The quadratic bias and mean square error matrix of the proposed estimators are derived and compared. Furthermore, a numerical example and a Monte Carlo simulation are given to illustrate some of the theoretical results.  相似文献   

11.
The presence of autocorrelation in errors and multicollinearity among the regressors have undesirable effects on the least-squares regression. There are a wide range of methods which are proposed to overcome the usefulness of the ordinary least-squares estimator or the generalized least-squares estimator, such as the Stein-rule, restricted least-squares or ridge estimator. Therefore, we introduce a new feasible generalized restricted ridge regression (FGRR) estimator to examine multicollinearity and autocorrelation problems simultaneously for the general linear regression model. We also derive some statistical properties of the FGRR estimator and comparisons have been conducted using matrix mean-square error. Moreover, a Monte Carlo simulation experiment is performed to investigate the performance of the proposed estimator over the others.  相似文献   

12.
Consider a linear regression model with some relevant regressors are unobservable. In such a situation, we estimate the model by using the proxy variables as regressors or by simply omitting the relevant regressors. In this paper, we derive the explicit formula of predictive mean squared error (PMSE) of a general family of shrinkage estimators of regression coefficients. It is shown analytically that the positive-part shrinkage estimator dominates the ordinary shrinkage estimator even when proxy variables are used in place of the unobserved variables. Also, as an example, our result is applied to the double k-class estimator proposed by Ullah and Ullah (Double k-class estimators of coefficients in linear regression. Econometrica. 1978;46:705–722). Our numerical results show that the positive-part double k-class estimator with proxy variables has preferable PMSE performance.  相似文献   

13.
In heteroskedastic regression models, the least squares (OLS) covariance matrix estimator is inconsistent and inference is not reliable. To deal with inconsistency one can estimate the regression coefficients by OLS, and then implement a heteroskedasticity consistent covariance matrix (HCCM) estimator. Unfortunately the HCCM estimator is biased. The bias is reduced by implementing a robust regression, and by using the robust residuals to compute the HCCM estimator (RHCCM). A Monte-Carlo study analyzes the behavior of RHCCM and of other HCCM estimators, in the presence of systematic and random heteroskedasticity, and of outliers in the explanatory variables.  相似文献   

14.
In this paper, the problem of estimation of the regression coefficients in a multiple regression model is considered under the multicollinearity situation when there are series of stochastic linear restrictions available on the regression parameter vector. We have considered the preliminary test ridge regression estimators (PTRREs) based on the Wald, likelihood ratio, and lagrangian multiplier tests. Tables for the maximum and minimum guaranteed efficiency of the PTRREs are obtained, which allow us to determine the optimum choice of the level of significance corresponding to the optimum estimator. Some numerical results support the findings.  相似文献   

15.
For the classical linear regression problem, a number of estimators alternative to least squares have been proposed for situations in which multicollinearity is a problem. There is, however, relatively little known about how these estimators behave in practice. This paper investigates mean square error properties for a number of biased regression estimators, and discusses some practical implications of the use of such estimators, A conclusion is that certain types of ridge estimatorsappear to have good mean square error properties, and this may be useful in situations in which mean square error is important  相似文献   

16.
Several biased estimators have been proposed as alternatives to the least squares estimator when multicollinearity is present in the multiple linear regression model. The ridge estimator and the principal components estimator are two techniques that have been proposed for such problems. In this paper the class of fractional principal component estimators is developed for the multiple linear regression model. This class contains many of the biased estimators commonly used to combat multicollinearity. In the fractional principal components framework, two new estimation techniques are introduced. The theoretical performances of the new estimators are evaluated and their small sample properties are compared via simulation with the ridge, generalized ridge and principal components estimators  相似文献   

17.
This paper deals with the problem of multicollinearity in a multiple linear regression model with linear equality restrictions. The restricted two parameter estimator which was proposed in case of multicollinearity satisfies the restrictions. The performance of the restricted two parameter estimator over the restricted least squares (RLS) estimator and the ordinary least squares (OLS) estimator is examined under the mean square error (MSE) matrix criterion when the restrictions are correct and not correct. The necessary and sufficient conditions for the restricted ridge regression, restricted Liu and restricted shrunken estimators, which are the special cases of the restricted two parameter estimator, to have a smaller MSE matrix than the RLS and the OLS estimators are derived when the restrictions hold true and do not hold true. Theoretical results are illustrated with numerical examples based on Webster, Gunst and Mason data and Gorman and Toman data. We conduct a final demonstration of the performance of the estimators by running a Monte Carlo simulation which shows that when the variance of the error term and the correlation between the explanatory variables are large, the restricted two parameter estimator performs better than the RLS estimator and the OLS estimator under the configurations examined.  相似文献   

18.
Abstract

We consider adaptive ridge regression estimators in the general linear model with homogeneous spherically symmetric errors. A restriction on the parameter of regression is considered. We assume that all components are non negative (i.e. on the positive orthant). For this setting, we produce under general quadratic loss such estimators whose risk function dominates that of the least squares provided the number of regressors in the least fore.  相似文献   

19.
Presence of collinearity among the explanatory variables results in larger standard errors of parameters estimated. When multicollinearity is present among the explanatory variables, the ordinary least-square (OLS) estimators tend to be unstable due to larger variance of the estimators of the regression coefficients. As alternatives to OLS estimators few ridge estimators are available in the literature. This article presents some of the popular ridge estimators and attempts to provide (i) a generalized class of ridge estimators and (ii) a modified ridge estimator. The performance of the proposed estimators is investigated with the help of Monte Carlo simulation technique. Simulation results indicate that the suggested estimators perform better than the ordinary least-square (OLS) estimators and other estimators considered in this article.  相似文献   

20.
This article primarily aims to put forward the linearized restricted ridge regression (LRRR) estimator in linear regression models. Two types of LRRR estimators are investigated under the PRESS criterion and the optimal LRRR estimators and the optimal restricted generalized ridge regression estimator are obtained. We apply the results to the Hald data and finally make a simulation study by using the method of McDonald and Galarneau.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号