首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A simple estimation procedure, based on the generalized least squares method, for the parameters of the Weibull distribution is described and investigated. Through a simulation study, this estimation technique is compared with maximum likelihood estimation, ordinary least squares estimation, and Menon's estimation procedure; this comparison is based on observed relative efficiencies (that is, the ratio of the Cramer-Rao lower bound to the observed mean squared error). Simulation results are presented for samples of size 25. Among the estimators considered in this simulation study, the generalized least squares estimator was found to be the "best" estimator for the shape parameter and a close competitor to the maximum likelihood estimator of the scale parameter.  相似文献   

2.
This paper compares methods of estimation for the parameters of a Pareto distribution of the first kind to determine which method provides the better estimates when the observations are censored, The unweighted least squares (LS) and the maximum likelihood estimates (MLE) are presented for both censored and uncensored data. The MLE's are obtained using two methods, In the first, called the ML method, it is shown that log-likelihood is maximized when the scale parameter is the minimum sample value. In the second method, called the modified ML (MML) method, the estimates are found by utilizing the maximum likelihood value of the shape parameter in terms of the scale parameter and the equation for the mean of the first order statistic as a function of both parameters. Since censored data often occur in applications, we study two types of censoring for their effects on the methods of estimation: Type II censoring and multiple random censoring. In this study we consider different sample sizes and several values of the true shape and scale parameters.

Comparisons are made in terms of bias and the mean squared error of the estimates. We propose that the LS method be generally preferred over the ML and MML methods for estimating the Pareto parameter γ for all sample sizes, all values of the parameter and for both complete and censored samples. In many cases, however, the ML estimates are comparable in their efficiency, so that either estimator can effectively be used. For estimating the parameter α, the LS method is also generally preferred for smaller values of the parameter (α ≤4). For the larger values of the parameter, and for censored samples, the MML method appears superior to the other methods with a slight advantage over the LS method. For larger values of the parameter α, for censored samples and all methods, underestimation can be a problem.  相似文献   

3.
The two-sample problem for comparing Weibull scale parameters is studied for randomly censored data. Three different test statistics are considered and their asymptotic properties are established under a sequence of local alternatives, It is shown that both the test statistic based on the mlefs (maximum likelihood estimators) and the likelihood ratio test are asymptotically optimum. The third statistic based only on the number of failures is not, Asymptotic relative efficiency of this statistic is obtained and its numerical values are computed for uniform and Weibull censoring, Effects of uniform random censoring on the censoring level of the experiment are illus¬trated, A direct proof for the joint asymptotic normality of the mlefs of the shape and the scale parameters is also given  相似文献   

4.
Pseudo maximum likelihood estimation (PML) for the Dirich-let-multinomial distribution is proposed and examined in this pa-per. The procedure is compared to that based on moments (MM) for its asymptotic relative efficiency (ARE) relative to the maximum likelihood estimate (ML). It is found that PML, requiring much less computational effort than ML and possessing considerably higher ARE than MM, constitutes a good compromise between ML and MM. PML is also found to have very high ARE when an estimate for the scale parameter in the Dirichlet-multinomial distribution is all that is needed.  相似文献   

5.
Weibull distributions have received wide ranging applications in many areas including reliability, hydrology and communication systems. Many estimation methods have been proposed for Weibull distributions. But there has not been a comprehensive comparison of these estimation methods. Most studies have focused on comparing the maximum likelihood estimation (MLE) with one of the other approaches. In this paper, we first propose an L-moment estimator for the Weibull distribution. Then, a comprehensive comparison is made of the following methods: the method of maximum likelihood estimation (MLE), the method of logarithmic moments, the percentile method, the method of moments and the method of L-moments.  相似文献   

6.
This article is concerned with modifications of both maximum likelihood and moment estimators for parameters of the three-parameter Wei bull distribution. Modifications presented here are basically the same as those previously proposed by the authors (1980, 1981, 1982) in connection with the lognormal and the gamma distributions. Computer programs were prepared for the practical application of these estimators and an illustrative example is included. Results of a simulation study provide insight into the sampling behavior of the new estimators and include comparisons with the traditional moment and maximum likelihood estimators. For some combinations of parameter values, some of the modified estimators considered here enjoy advantages over both moment and maximum likelihood estimators with respect to bias, variance, and/or ease of calculation.  相似文献   

7.
As an applicable and flexible lifetime model, the two-parameter generalized half-normal (GHN) distribution has been received wide attention in the field of reliability analysis and lifetime study. In this paper maximum likelihood estimates of the model parameters are discussed and we also proposed corresponding bias-corrected estimates. Unweighted and weighted least squares estimates for the parameters of the GHN distribution are also presented for comparison purpose. Moreover, the likelihood ratio test is provided as complementary. Simulation study and illustrative examples are provided to compare the performance of the proposed methods.  相似文献   

8.
The problem of nonexistence of the maximum likelihood estimators (m.l.e.) with positive probability is investigated for the truncated Weibull distribution. Similar nonexistence of the m.l.e. is known for some other distributions such as truncated exponential, truncated normal, and one parameter truncated gamma. Modified likelihood estimators, which exist with probability one, are given and compared with the m.l.e.  相似文献   

9.
Bimodal mixture Weibull distribution being a special case of mixture Weibull distribution has been used recently as a suitable model for heterogeneous data sets in many practical applications. The bimodal mixture Weibull term represents a mixture of two Weibull distributions. Although many estimation methods have been proposed for the bimodal mixture Weibull distribution, there is not a comprehensive comparison. This paper presents a detailed comparison of five kinds of numerical methods, such as maximum likelihood estimation, least-squares method, method of moments, method of logarithmic moments and percentile method (PM) in terms of several criteria by simulation study. Also parameter estimation methods are applied to real data.  相似文献   

10.
A simulation experiment compares the accuracy and precision of three alternate estimation techniques for the parameters of the STARMA model. Maximum likelihood estimation, in most ways the "best" estimation procedure, involves a large amount of computational effort so that two approximate techniques, exact least squares and conditional maximum likelihood, are often proposed for series of moderate lengths. This simulation experiment compares the accuracy of these three estimation procedures for simulated series of various lengths, and discusses the appropriateness of the three procedures as a function of the length of the observed series.  相似文献   

11.
Cooray and Ananda introduced a two-parameter generalized Half-Normal distribution which is useful for modelling lifetime data, while its maximum likelihood estimators (MLEs) are biased in finite samples. This motivates us to construct nearly unbiased estimators for the unknown parameters of the model. In this paper, we adopt two approaches for bias reduction of the MLEs of the parameters of generalized Half-Normal distribution. The first approach is the analytical methodology suggested by Cox and Snell and the second is based on parametric Bootstrap resampling method. Additionally, the method of moments (MMEs) is used for comparison purposes. The numerical evidence shows that the analytic bias-corrected estimators significantly outperform their bootstrapped-based counterpart for small and moderate samples as well as for MLEs and MMEs. Also, it is apparent from the results that bias- corrected estimates of shape parameter perform better than that of scale parameter. Further, the results show that bias-correction scheme yields nearly unbiased estimates. Finally, six fracture toughness real data sets illustrate the application of our methods.  相似文献   

12.
The Burr XII distribution offers a flexible alternative to the distributions that play important role for modelling data in reliability, risk and process capability. However, estimating the shape parameters of the Burr XII distribution is a challenging problem. The classical estimation methods such as maximum likelihood and least squares are often used to estimate the parameters of the Burr XII distribution, but these methods are very sensitive to the outliers in the data. Thus, a robust estimation method alternative to the classical methods is needed to find robust estimators that are less sensitive to the outliers in the data. The purpose of this paper is to use the optimal B-robust estimation method [Hampel FR, Ronchetti EM, Rousseeuw PJ, Stahel WA. Robust statistics: the approach based on influence functions. New York: Wiley; 1986] to obtain robust estimators for the shape parameters of the Burr XII distribution. The simulation results show that the optimal B-robust estimators generally outperform the classical estimators in terms of the bias and root mean square errors when there are outliers in data.  相似文献   

13.
14.
15.
In this article, we investigate various properties and methods of estimation of the Weighted Exponential distribution. Although, our main focus is on estimation (from both frequentist and Bayesian point of view) yet, the stochastic ordering, the Bonferroni and the Lorenz curves, various entropies and order statistics are derived first time for the said distribution. Different types of loss functions are considered for Bayesian estimation. Furthermore, the Bayes estimators and their respective posterior risks are computed and compared using Gibbs sampling. The different reliability characteristics including hazard function, stress and strength analysis, and mean residual life function are also derived. Monte Carlo simulations are performed to compare the performances of the proposed methods of estimation and two real data sets have been analysed for illustrative purposes.  相似文献   

16.
Lognormal distribution is one of the popular distributions used for modelling positively skewed data, especially those encountered in economic and financial data. In this paper, we propose an efficient method for the estimation of parameters and quantiles of the three-parameter lognormal distribution, which avoids the problem of unbounded likelihood, by using statistics that are invariant to unknown location. Through a Monte Carlo simulation study, we then show that the proposed method performs well compared to other prominent methods in terms of both bias and mean-squared error. Finally, we present two illustrative examples.  相似文献   

17.
A compound class of zero truncated Poisson and lifetime distributions is introduced. A specialization is paved to a new three-parameter distribution, called doubly Poisson-exponential distribution, which may represent the lifetime of units connected in a series-parallel system. The new distribution can be obtained by compounding two zero truncated Poisson distributions with an exponential distribution. Among its motivations is that its hazard rate function can take different shapes such as decreasing, increasing and upside-down bathtub depending on the values of its parameters. Several properties of the new distribution are discussed. Based on progressive type-II censoring, six estimation methods [maximum likelihood, moments, least squares, weighted least squares and Bayes (under linear-exponential and general entropy loss functions) estimations] are used to estimate the involved parameters. The performance of these methods is investigated through a simulation study. The Bayes estimates are obtained using Markov chain Monte Carlo algorithm. In addition, confidence intervals, symmetric credible intervals and highest posterior density credible intervals of the parameters are obtained. Finally, an application to a real data set is used to compare the new distribution with other five distributions.  相似文献   

18.
This paper presents a methodology based on transforming estimation methods in optimization problems in order to incorporate in a natural way some constraints that contain extra information not considered by standard estimation methods, with the aim of improving the quality of the parameter estimates. We include here three types of such information: bounds for the cumulative distribution function, bounds for the quantiles, and any restrictions on the parameters such as those imposed by the support of the random variable under consideration. The method is quite general and can be applied to many estimation methods such as the maximum likelihood (ML), the method of moments (MOM), the least squares, the least absolute values, and the minimax methods. The performances of the obtained estimates from several families of distributions are investigated for the ML and the MOM, using simulations. The simulation results show that for small sample sizes important gains can be achieved with respect to the case where the above information is ignored. In addition, we discuss sensitivity analysis methods for assessing the influence of observations on the proposed estimators. The method applies to both univariate and multivariate data.  相似文献   

19.
This paper demonstrates that well-known parameter estimation methods for Gaussian fields place different emphasis on the high and low frequency components of the data. As a consequence, the relative importance of the frequencies under the objective of the analysis should be taken into account when selecting an estimation method, in addition to other considerations such as statistical and computational efficiency. The paper also shows that when noise is added to the Gaussian field, maximum pseudolikelihood automatically sets the smoothing parameter of the model equal to one. A simulation study then indicates that generalised cross-validation is more robust than maximum likelihood un-

der model misspecification in smoothing and image restoration problems. This has implications for Bayesian procedures since these use the same weightings of the frequencies as the likelihood.  相似文献   

20.
In testing product reliability, there is often a critical cutoff level that determines whether a specimen is classified as failed. One consequence is that the number of degradation data collected varies from specimen to specimen. The information of random sample size should be included in the model, and our study shows that it can be influential in estimating model parameters. Two-stage least squares (LS) and maximum modified likelihood (MML) estimation, which both assume fixed sample sizes, are commonly used for estimating parameters in the repeated measurements models typically applied to degradation data. However, the LS estimate is not consistent in the case of random sample sizes. This article derives the likelihood for the random sample size model and suggests using maximum likelihood (ML) for parameter estimation. Our simulation studies show that ML estimates have smaller biases and variances compared to the LS and MML estimates. All estimation methods can be greatly improved if the number of specimens increases from 5 to 10. A data set from a semiconductor application is used to illustrate our methods.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号