首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 522 毫秒
1.
The purpose of this paper is to develop a Bayesian approach for the Weibull-Negative-Binomial regression model with cure rate under latent failure causes and presence of randomized activation mechanisms. We assume the number of competing causes of the event of interest follows a Negative Binomial (NB) distribution while the latent lifetimes are assumed to follow a Weibull distribution. Markov chain Monte Carlos (MCMC) methods are used to develop the Bayesian procedure. Model selection to compare the fitted models is discussed. Moreover, we develop case deletion influence diagnostics for the joint posterior distribution based on the ψ-divergence, which has several divergence measures as particular cases. The developed procedures are illustrated with a real data set.  相似文献   

2.
In the classical approach to qualitative reliability demonstration, system failure probabilities are estimated based on a binomial sample drawn from the running production. In this paper, we show how to take account of additional available sampling information for some or even all subsystems of a current system under test with serial reliability structure. In that connection, we present two approaches, a frequentist and a Bayesian one, for assessing an upper bound for the failure probability of serial systems under binomial subsystem data. In the frequentist approach, we introduce (i) a new way of deriving the probability distribution for the number of system failures, which might be randomly assembled from the failed subsystems and (ii) a more accurate estimator for the Clopper–Pearson upper bound using a beta mixture distribution. In the Bayesian approach, however, we infer the posterior distribution for the system failure probability on the basis of the system/subsystem testing results and a prior distribution for the subsystem failure probabilities. We propose three different prior distributions and compare their performances in the context of high reliability testing. Finally, we apply the proposed methods to reduce the efforts of semiconductor burn-in studies by considering synergies such as comparable chip layers, among different chip technologies.  相似文献   

3.
System characteristics of a redundant repairable system with two primary units and one standby are studied from a Bayesian viewpoint with different types of priors assumed for unknown parameters, in which the coverage factor is the same for an operating unit failure as that for a standby unit failure. Times to failure and times to repair of the operating and standby units are assumed to follow exponential distributions. When times to failure and times to repair with uncertain parameters, a Bayesian approach is adopted to evaluate system characteristics. Monte Carlo simulation is used to derive the posterior distribution for the mean time to system failure and the steady-state availability. Some numerical experiments are performed to illustrate the results derived in this paper.  相似文献   

4.
In this paper, we consider the analysis of hybrid censored competing risks data, based on Cox's latent failure time model assumptions. It is assumed that lifetime distributions of latent causes of failure follow Weibull distribution with the same shape parameter, but different scale parameters. Maximum likelihood estimators (MLEs) of the unknown parameters can be obtained by solving a one-dimensional optimization problem, and we propose a fixed-point type algorithm to solve this optimization problem. Approximate MLEs have been proposed based on Taylor series expansion, and they have explicit expressions. Bayesian inference of the unknown parameters are obtained based on the assumption that the shape parameter has a log-concave prior density function, and for the given shape parameter, the scale parameters have Beta–Gamma priors. We propose to use Markov Chain Monte Carlo samples to compute Bayes estimates and also to construct highest posterior density credible intervals. Monte Carlo simulations are performed to investigate the performances of the different estimators, and two data sets have been analysed for illustrative purposes.  相似文献   

5.
System characteristics of a redundant repairable system are studied from a Bayesian viewpoint with different types of priors assumed for the unknown parameters. The system consists of two primary units, one standby unit, and one repair facility which is activated when switching to standby fails. Times to failure and times to repair of the operating units are assumed to follow exponential distributions. When time to failure and time to repair have uncertain parameters, a Bayesian approach is adopted to evaluate system characteristics. Monte Carlo simulation is used to derive the posterior distribution for the mean time to system failure and steady-state availability. Some numerical experiments are performed to illustrate the results derived in this paper.  相似文献   

6.
In reliability analysis, it is common to consider several causes, either mechanical or electrical, those are competing to fail a unit. These causes are called “competing risks.” In this paper, we consider the simple step-stress model with competing risks for failure from Weibull distribution under progressive Type-II censoring. Based on the proportional hazard model, we obtain the maximum likelihood estimates (MLEs) of the unknown parameters. The confidence intervals are derived by using the asymptotic distributions of the MLEs and bootstrap method. For comparison, we obtain the Bayesian estimates and the highest posterior density (HPD) credible intervals based on different prior distributions. Finally, their performance is discussed through simulations.  相似文献   

7.
Proportional hazards frailty models use a random effect, so called frailty, to construct association for clustered failure time data. It is customary to assume that the random frailty follows a gamma distribution. In this paper, we propose a graphical method for assessing adequacy of the proportional hazards frailty models. In particular, we focus on the assessment of the gamma distribution assumption for the frailties. We calculate the average of the posterior expected frailties at several followup time points and compare it at these time points to 1, the known mean frailty. Large discrepancies indicate lack of fit. To aid in assessing the goodness of fit, we derive and estimate the standard error of the mean of the posterior expected frailties at each time point examined. We give an example to illustrate the proposed methodology and perform sensitivity analysis by simulations.  相似文献   

8.
The failure rate function commonly has a bathtub shape in practice. In this paper we discuss a regression model considering new Weibull extended distribution developed by Xie et al. (2002) that can be used to model this type of failure rate function. Assuming censored data, we discuss parameter estimation: maximum likelihood method and a Bayesian approach where Gibbs algorithms along with Metropolis steps are used to obtain the posterior summaries of interest. We derive the appropriate matrices for assessing the local influence on the parameter estimates under different perturbation schemes, and we also present some ways to perform global influence. Also, some discussions on case deletion influence diagnostics are developed for the joint posterior distribution based on the Kullback–Leibler divergence. Besides, for different parameter settings, sample sizes and censoring percentages, are performed various simulations and display and compare the empirical distribution of the Martingale-type residual with the standard normal distribution. These studies suggest that the residual analysis usually performed in normal linear regression models can be straightforwardly extended to the martingale-type residual in log-Weibull extended models with censored data. Finally, we analyze a real data set under a log-Weibull extended regression model. We perform diagnostic analysis and model check based on the martingale-type residual to select an appropriate model.  相似文献   

9.
There are several failure modes may cause system failed in reliability and survival analysis. It is usually assumed that the causes of failure modes are independent each other, though this assumption does not always hold. Dependent competing risks modes from Marshall-Olkin bivariate Weibull distribution under Type-I progressive interval censoring scheme are considered in this paper. We derive the maximum likelihood function, the maximum likelihood estimates, the 95% Bootstrap confidence intervals and the 95% coverage percentages of the parameters when shape parameter is known, and EM algorithm is applied when shape parameter is unknown. The Monte-Carlo simulation is given to illustrate the theoretical analysis and the effects of parameters estimates under different sample sizes. Finally, a data set has been analyzed for illustrative purposes.  相似文献   

10.
In this paper, we propose a method to model the relationship between degradation and failure time for a simple step-stress test where the underlying degradation path is linear and different causes of failure are possible. It is assumed that the intensity function depends only on the degradation value. No assumptions are made about the distribution of the failure times. A simple step-stress test is used to induce failure experimentally and a tampered failure rate model is proposed to describe the effect of the changing stress on the intensities. We assume that some of the products that fail during the test have a cause of failure that is only known to belong to a certain subset of all possible failures. This case is known as masking. In the presence of masking, the maximum likelihood estimates of the model parameters are obtained through the expectation–maximization algorithm by treating the causes of failure as missing values. The effect of incomplete information on the estimation of parameters is studied through a Monte-Carlo simulation. Finally, a real-world example is analysed to illustrate the application of the proposed methods.  相似文献   

11.
We study the nonparametric maximum likelihood estimate (NPMLE) of the cdf or sub-distribution functions of the failure time for the failure causes in a series system. The study is motivated by a cancer research data (from the Memorial Sloan-Kettering Cancer Center) with interval-censored time and masked failure cause. The NPMLE based on this data set suggests that the existing masking models are not appropriate. We propose a new model called the random partition masking model, which does not rely on the commonly used symmetry assumption (namely, given the failure cause, the probability of observing the masked failure causes is independent of the failure time; see Flehinger et al. Inference about defects in the presence of masking, Technometrics 38 (1996), pp. 247–255). The RPM model is easier to implement in simulation studies than the existing models. We discuss the algorithms for computing the NPMLE and study its asymptotic properties. Our simulation and data analysis indicate that the NPMLE is feasible for a moderate sample size.  相似文献   

12.
Semiparametric Bayesian models are nowadays a popular tool in event history analysis. An important area of research concerns the investigation of frequentist properties of posterior inference. In this paper, we propose novel semiparametric Bayesian models for the analysis of competing risks data and investigate the Bernstein–von Mises theorem for differentiable functionals of model parameters. The model is specified by expressing the cause-specific hazard as the product of the conditional probability of a failure type and the overall hazard rate. We take the conditional probability as a smooth function of time and leave the cumulative overall hazard unspecified. A prior distribution is defined on the joint parameter space, which includes a beta process prior for the cumulative overall hazard. We first develop the large-sample properties of maximum likelihood estimators by giving simple sufficient conditions for them to hold. Then, we show that, under the chosen priors, the posterior distribution for any differentiable functional of interest is asymptotically equivalent to the sampling distribution derived from maximum likelihood estimation. A simulation study is provided to illustrate the coverage properties of credible intervals on cumulative incidence functions.  相似文献   

13.
We make an analogy between images and statistical mechanics systems. Pixel gray levels and the presence and orientation of edges are viewed as states of atoms or molecules in a lattice-like physical system. The assignment of an energy function in the physical system determines its Gibbs distribution. Because of the Gibbs distribution, Markov random field (MRF) equivalence, this assignment also determines an MRF image model. The energy function is a more convenient and natural mechanism for embodying picture attributes than are the local characteristics of the MRF. For a range of degradation mechanisms, including blurring, non-linear deformations, and multiplicative or additive noise, the posterior distribution is an MRF with a structure akin to the image model. By the analogy, the posterior distribution defines another (imaginary) physical system. Gradual temperature reduction in the physical system isolates low-energy states (‘annealing’), or what is the same thing, the most probable states under the Gibbs distribution. The analogous operation under the posterior distribution yields the maximum a posteriori (MAP) estimate of the image given the degraded observations. The result is a highly parallel ‘relaxation’ algorithm for MAP estimation. We establish convergence properties of the algorithm and we experiment with some simple pictures, for which good restorations are obtained at low signal-to-noise ratios.  相似文献   

14.
We propose a class of Bayesian semiparametric mixed-effects models; its distinctive feature is the randomness of the grouping of observations, which can be inferred from the data. The model can be viewed under a more natural perspective, as a Bayesian semiparametric regression model on the log-scale; hence, in the original scale, the error is a mixture of Weibull densities mixed on both parameters by a normalized generalized gamma random measure, encompassing the Dirichlet process. As an estimate of the posterior distribution of the clustering of the random-effects parameters, we consider the partition minimizing the posterior expectation of a suitable class of loss functions. As a merely illustrative application of our model we consider a Kevlar fibre lifetime dataset (with censoring). We implement an MCMC scheme, obtaining posterior credibility intervals for the predictive distributions and for the quantiles of the failure times under different stress levels. Compared to a previous parametric Bayesian analysis, we obtain narrower credibility intervals and a better fit to the data. We found that there are three main clusters among the random-effects parameters, in accordance with previous frequentist analysis.  相似文献   

15.
Summary.  We describe the modelling of crack initiation and growth in a group of orthopaedic hip replacements. A hierarchical model is proposed and fitted with Bayesian methods, implemented by the Gibbs sampler. Our interest is in predicting the failure of the replacements, which is predominately caused by crack activity in the cement that fixates the metal prosthesis to the bone. Simulation from the model based on posterior distribution samples allows us to approx-imate the reliability function and to assess the effect on reliability of the properties of the replacement. We discuss the ideas behind this approach, which can be generalized to any group of physical systems and any function of their state that interests us.  相似文献   

16.
Many existing approaches to analysing interval-censored data lack flexibility or efficiency. In this paper, we propose an efficient, easy to implement approach on accelerated failure time model with a logarithm transformation of the failure time and flexible specifications on the error distribution. We use exact inference for the Dirichlet process without approximation in imputation. Our algorithm can be implemented with simple Gibbs sampling which produces exact posterior distributions on the features of interest. Simulation and real data analysis demonstrate the advantage of our method compared to some other methods.  相似文献   

17.
A random distribution function on the positive real line which belongs to the class of neutral to the right priors is defined. It corresponds to the superposition of independent beta processes at the cumulative hazard level. The definition is constructive and starts with a discrete time process with random probability masses obtained from suitably defined products of independent beta random variables. The continuous time version is derived as the corresponding infinitesimal weak limit and is described in terms of completely random measures. It takes the interpretation of the survival distribution resulting from independent competing failure times. We discuss prior specification and illustrate posterior inference on a real data example.  相似文献   

18.
We formulate a new cure rate survival model by assuming that the number of competing causes of the event of interest has the Poisson distribution, and the time to this event has the generalized linear failure rate distribution. A new distribution to analyze lifetime data is defined from the proposed cure rate model, and its quantile function as well as a general expansion for the moments is derived. We estimate the parameters of the model with cure rate in the presence of covariates for censored observations using maximum likelihood and derive the observed information matrix. We obtain the appropriate matrices for assessing local influence on the parameter estimates under different perturbation schemes and present some ways to perform global influence analysis. The usefulness of the proposed cure rate survival model is illustrated in an application to real data.  相似文献   

19.
In the competing risks problem an important role is played by the cumulative incidence function (CIF), whose value at time t is the probability of failure by time t for a particular type of failure in the presence of other risks. Its estimation and asymptotic distribution theory have been studied by many. In some cases there are reasons to believe that the CIFs due to two types of failure are order restricted. Several procedures have appeared in the literature for testing for such orders. In this paper we initiate the study of estimation of two CIFs subject to a type of stochastic ordering, both when there are just two causes of failure and when there are more than two causes of failure, treating those other than the two of interest as a censoring mechanism. We do not assume independence of the two types of failure of interest; however, these are assumed to be independent of the other causes in the censored case. Weak convergence results for the estimators have been derived. It is shown that when the order restriction is strict, the asymptotic distributions are the same as those for the empirical estimators without the order restriction. Thus we get the restricted estimators “free of charge”, at least in the asymptotic sense. When the two CIFs are equal, the asymptotic MSE is reduced by using the order restriction. For finite sample sizes simulations seem to indicate that the restricted estimators have uniformly smaller MSEs than the unrestricted ones in all cases.  相似文献   

20.
In this article we study the residual lifetime of a coherent system after the rth failure, i.e. the time elapsed from the rth failure until the system failure given that the system operates at the time of the rth failure. We provide a mixture representation for the corresponding residual lifetime distribution in terms of signature. We also obtain some stochastic ordering results for the residual lifetimes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号