首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We consider Khamis' (1960) Laguerre expansion with gamma weight function as a class of “near-gamma” priors (K-prior) to obtain the Bayes predictor of a finite population mean under the Poisson regression superpopulation model using Zellner's balanced loss function (BLF). Kullback–Leibler (K-L) distance between gamma and some K-priors is tabulated to examine the quantitative prior robustness. Some numerical investigations are also conducted to illustrate the effects of a change in skewness and/or kurtosis on the Bayes predictor and the corresponding minimal Bayes predictive expected loss (MBPEL). Loss robustness with respect to the class of BLFs is also examined in terms of relative savings loss (RSL).  相似文献   

2.
We obtain a Bayes predictor and a Bayes prediction risk of the mean of a finite population relative to the balanced loss function. The predictive expected losses associated with classical and standard Bayes predictors are derived and compared with that of a Bayes predictor under a balanced loss function. Specific expressions for a regular exponential family distributed superpopulation are presented and illustrated for some well-known superpopulations.  相似文献   

3.
In this article, we consider Bayes prediction in a finite population under the simple location error-in-variables superpopulation model. Bayes predictor of the finite population mean under Zellner's balanced loss function and the corresponding relative losses and relative savings loss are derived. The prior distribution of the unknown location parameter of the model is assumed to have a non-normal distribution belonging to the class of Edgeworth series distributions. Effects of non normality of the “true” prior distribution and that of a possible misspecification of the loss function on the Bayes predictor are illustrated for a hypothetical population.  相似文献   

4.
We consider Prais–Houthakker heteroscedastic normal regression model having variance of the dependent variable same as square of its expectation. Bayes predictors for the regression coefficient and the mean of a finite population are derived using Zellner's balanced loss function. Bayes predictive expected losses are obtained and compared with those of classical predictors and Bayes predictors under squared error loss function to examine their loss robustness.  相似文献   

5.
Consider the estimation problem for the multiple linear regression (MLR) setup, under the balanced loss function (BLF), where goodness of fit and precision of estimation are modeled using either squared error loss (SEL) or linear exponential (LINEX) loss functions. The authors derive the minimum risk estimates for two different variants of BLF and prove for both the cases the existence of the ubiquitous SEL and LINEX estimates at the boundary conditions. Conclusions draw from the exhaustive simulation runs prove the general nature of proposed theorems.  相似文献   

6.
Appreciating the desirability of simultaneously using both the criteria of goodness of fitted model and clustering of estimates around true parameter values, an extended version of the balanced loss function is presented and the Bayesian estimation of regression coefficients is discussed. The thus obtained optimal estimator is then compared with the least squares estimator and posterior mean vector with respect to the criteria like posterior expected loss, Bayes risk, bias vector, mean squared error matrix and risk function.  相似文献   

7.
The power function distribution is often used to study the electrical component reliability. In this paper, we model a heterogeneous population using the two-component mixture of the power function distribution. A comprehensive simulation scheme including a large number of parameter points is followed to highlight the properties and behavior of the estimates in terms of sample size, censoring rate, parameters size and the proportion of the components of the mixture. The parameters of the power function mixture are estimated and compared using the Bayes estimates. A simulated mixture data with censored observations is generated by probabilistic mixing for the computational purposes. Elegant closed form expressions for the Bayes estimators and their variances are derived for the censored sample as well as for the complete sample. Some interesting comparison and properties of the estimates are observed and presented. The system of three non-linear equations, required to be solved iteratively for the computations of maximum likelihood (ML) estimates, is derived. The complete sample expressions for the ML estimates and for their variances are also given. The components of the information matrix are constructed as well. Uninformative as well as informative priors are assumed for the derivation of the Bayes estimators. A real-life mixture data example has also been discussed. The posterior predictive distribution with the informative Gamma prior is derived, and the equations required to find the lower and upper limits of the predictive intervals are constructed. The Bayes estimates are evaluated under the squared error loss function.  相似文献   

8.
Nonparametric Bayes and empirical Bayes estimations of the

survival function of a unit of age t (> 0) using Dirichlet

process prior are presented. The proposed empirical Bayes

estimators are found to be “asymptotically optimal” in the sense of Robbins (1955). The performances of the proposed

empirical Bayes estimators are compared with those of certain

rival estimators in terms of relative savings loss, The exact

expressions for Bayes risks are also provided in certain cases.  相似文献   

9.
In this note, we consider the problem of estimating an unknown parameter θ in the sense of the Pitman's measure of closeness (PMC) using the balanced loss function (BLF). We show that the PMC comparison of estimators under the BLF can be reduced to the PMC comparison under the usual absolute error loss. The Pitman-closest estimators of the location and scale parameters under BLF are also characterized. Illustrative examples are given to show the broad range applications of the obtained results.  相似文献   

10.
Common loss functions used for the restoration of grey scale images include the zero–one loss and the sum of squared errors. The corresponding estimators, the posterior mode and the posterior marginal mean, are optimal Bayes estimators with respect to their way of measuring the loss for different error configurations. However, both these loss functions have a fundamental weakness: the loss does not depend on the spatial structure of the errors. This is important because a systematic structure in the errors can lead to misinterpretation of the estimated image. We propose a new loss function that also penalizes strong local sample covariance in the error and we discuss how the optimal Bayes estimator can be estimated using a two-step Markov chain Monte Carlo and simulated annealing algorithm. We present simulation results for some artificial data which show improvement with respect to small structures in the image.  相似文献   

11.
This paper considers the Bayesian analysis of the multivariate normal distribution under a new and bounded loss function, based on a reflection of the multivariate normal density function. The Bayes estimators of the mean vector can be derived for an arbitrary prior distribution of [d]. When the covariance matrix has an inverted Wishart prior density, a Bayes estimator of[d] is obtained under a bounded loss function, based on the entropy loss. Finally the admissibility of all linear estimators c[d]+ d for the mean vector is considered  相似文献   

12.
In this paper, the Bayes linear unbiased estimator (Bayes LUE) is derived under the balanced loss function. Moreover, the superiority of Bayes LUE over ordinary least square estimator is studied under the mean square error matrix criterion and Pitman closeness criterion. Furthermore, we compare Bayes LUE under the balanced loss function with Bayes LUE under the quadratic loss function.  相似文献   

13.
In this article, we consider the Bayes and empirical Bayes problem of the current population mean of a finite population when the sample data is available from other similar (m-1) finite populations. We investigate a general class of linear estimators and obtain the optimal linear Bayes estimator of the finite population mean under a squared error loss function that considered the cost of sampling. The optimal linear Bayes estimator and the sample size are obtained as a function of the parameters of the prior distribution. The corresponding empirical Bayes estimates are obtained by replacing the unknown hyperparameters with their respective consistent estimates. A Monte Carlo study is conducted to evaluate the performance of the proposed empirical Bayes procedure.  相似文献   

14.
The problem of simultaneous estimation of normal means is considered when variances are unequal and the loss is sum of squared errors. Minimaxity or non-minimaxity of empirical Bayes estimators is investigated when the common prior distribution is given by normal one with mean 0. Minimaxity results for the case when the loss is a weighted sum of squared errors is also given. Monte Carlo simulation results are given to compare the risk behavior of the empirical Bayes estimator with those of other minimax ones.  相似文献   

15.
Saddlepoint conditions on a predictor are introduced and developed to reconfirm the need for the assumption of a prior distribution in constructing a useful inferential procedure. A condition yields that the predictor induced from the maximum likelihood estimator is the worst under a loss, while the predictor induced from a suitable posterior mean is the best. This result indicates the promising role of Bayesian criteria, such as the deviance information criterion (DIC). As an implication, we critique the conventional empirical Bayes method because of its partial assumption of a prior distribution.  相似文献   

16.
The paper develops constrained Bayes and empirical Bayes estimators in the random effects ANOVA model under balanced loss functions. In the balanced normal–normal model, estimators of the Bayes risks of the constrained Bayes and constrained empirical Bayes estimators are provided which are correct asymptotically up to O(m-1)O(m-1), that is the remainder term is o(m-1)o(m-1), mm denoting the number of strata.  相似文献   

17.
Bayesian estimation for the two unknown parameters and the reliability function of the exponentiated Weibull model are obtained based on generalized order statistics. Markov chain Monte Carlo (MCMC) methods are considered to compute the Bayes estimates of the target parameters. Our computations are based on the balanced loss function which contains the symmetric and asymmetric loss functions as special cases. The results have been specialized to the progressively Type-II censored data and upper record values. Comparisons are made between Bayesian and maximum likelihood estimators via Monte Carlo simulation.  相似文献   

18.
In this article, we obtained Bayes estimators of parameters of Inverse Gaussian distributions under asymmetric loss function using Lindley's Approximation (L-Approximation). The proposed estimators have been compared with the corresponding estimators obtained under symmetric loss function and MLE for their risks. This comparison is illustrated using Monte-Carlo study of 2,000 simulated sample from the Inverse Gaussian distribution.  相似文献   

19.
Ghosh and Lahiri (1987a,b) considered simultaneous estimation of several strata means and variances where each stratum contains a finite number of elements, under the assumption that the posterior expectation of any stratum mean is a linear function of the sample observations - the so called“posterior linearity” property. In this paper we extend their result by retaining the “posterior linearity“ property of each stratum mean but allowing the superpopulation model whose mean as well as the variance-covariance structure changes from stratum to stratum. The performance of the proposed empirical Bayes estimators are found to be satisfactory both in terms of “asymptotic optimality” (Robbins (1955)) and “relative savings loss” (Efron and Morris (1973)).  相似文献   

20.
This paper describes the Bayesian inference and prediction of the two-parameter Weibull distribution when the data are Type-II censored data. The aim of this paper is twofold. First we consider the Bayesian inference of the unknown parameters under different loss functions. The Bayes estimates cannot be obtained in closed form. We use Gibbs sampling procedure to draw Markov Chain Monte Carlo (MCMC) samples and it has been used to compute the Bayes estimates and also to construct symmetric credible intervals. Further we consider the Bayes prediction of the future order statistics based on the observed sample. We consider the posterior predictive density of the future observations and also construct a predictive interval with a given coverage probability. Monte Carlo simulations are performed to compare different methods and one data analysis is performed for illustration purposes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号