首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
An algorithm is presented for calculating the power for the logistic and proportional hazards models in which some of the covariates are discrete and the remainders are multivariate normal. The mean and covariance matrix of the multivariate normal covariates may depend on the discrete covariates.

The algorithm, which finds the power of the Wald test, uses the result that the information matrix can be calculated using univariate numerical integration even when there are several continuous covariates. The algorithm is checked using simulation and in certain situations gives more accurate results than current methods which are based on simple formulae. The algorithm is used to explore properties of these models, in particular, the power gain from a prognostic covariate in the analysis of a clinical trial or observational study. The methods can be extended to determine power for other generalized linear models.  相似文献   

2.
In this article we focus on logistic regression models for binary responses. An existing result shows that the log-odds can be modelled depending on the log of the ratio between the conditional densities of the predictors given the response variable. This suggests that relevant statistical information could be extracted investigating the inverse problem. Thus, we present different methods for studying the log-density ratio through graphs, which allow us to select which predictors are needed, and how they should be included in a logistic regression model. We also discuss data analysis examples based on real datasets available in literature in order to provide further insights into the methodology proposed.  相似文献   

3.
Abstract

We propose to compare population means and variances under a semiparametric density ratio model. The proposed method is easy to implement by employing logistic regression procedures in many statistical software, and it often works very well when data are not normal. In this paper, we construct semiparametric estimators of the differences of two population means and variances, and derive their asymptotic distributions. We prove that the proposed semiparametric estimators are asymptotically more efficient than the corresponding non parametric ones. In addition, a simulation study and the analysis of two real data sets are presented. Finally, a short discussion is provided.  相似文献   

4.
The problems of existence and uniqueness of maximum likelihood estimates for logistic regression were completely solved by Silvapulle in 1981 and Albert and Anderson in 1984. In this paper, we extend the well-known results by Silvapulle and by Albert and Anderson to weighted logistic regression. We analytically prove the equivalence between the overlap condition used by Albert and Anderson and that used by Silvapulle. We show that the maximum likelihood estimate of weighted logistic regression does not exist if there is a complete separation or a quasicomplete separation of the data points, and exists and is unique if there is an overlap of data points. Our proofs and results for weighted logistic apply to unweighted logistic regression.  相似文献   

5.
Monotonic transformations of explanatory continuous variables are often used to improve the fit of the logistic regression model to the data. However, no analytic studies have been done to study the impact of such transformations. In this paper, we study invariant properties of the logistic regression model under monotonic transformations. We prove that the maximum likelihood estimates, information value, mutual information, Kolmogorov–Smirnov (KS) statistics, and lift table are all invariant under certain monotonic transformations.  相似文献   

6.
We consider asymptotic properties of the maximum likelihood and related estimators in a clustered logistic joinpoint model with an unknown joinpoint. Sufficient conditions are given for the consistency of confidence bounds produced by the parametric bootstrap; one of the conditions required is that the true location of the joinpoint is not at one of the observation times. A simulation study is presented to illustrate the lack of consistency of the bootstrap confidence bounds when the joinpoint is an observation time. A removal algorithm is presented which corrects this problem, but at the price of an increased mean square error. Finally, the methods are applied to data on yearly cancer mortality in the US for individuals age 65 and over.  相似文献   

7.
A small sample simultaneous testing method is proposed for nested linear regression model. The methodology is based on the generalized likelihood ratio test which is the large sample simultaneous testing method for general nested models. The proposed test is also used for model identification.  相似文献   

8.
Various methods have been suggested in the literature to handle a missing covariate in the presence of surrogate covariates. These methods belong to one of two paradigms. In the imputation paradigm, Pepe and Fleming (1991) and Reilly and Pepe (1995) suggested filling in missing covariates using the empirical distribution of the covariate obtained from the observed data. We can proceed one step further by imputing the missing covariate using nonparametric maximum likelihood estimates (NPMLE) of the density of the covariate. Recently Murphy and Van der Vaart (1998a) showed that such an approach yields a consistent, asymptotically normal, and semiparametric efficient estimate for the logistic regression coefficient. In the weighting paradigm, Zhao and Lipsitz (1992) suggested an estimating function using completely observed records after weighting inversely by the probability of observation. An extension of this weighting approach designed to achieve semiparametric efficient bound is considered by Robins, Hsieh and Newey (RHN) (1995). The two ends of each paradigm (NPMLE and RHN) attain the efficiency bound and are asymptotically equivalent. However, both require a substantial amount of computation. A question arises whether and when, in practical situations, this extensive computation is worthwhile. In this paper we investigate the performance of single and multiple imputation estimates, weighting estimates, semiparametric efficient estimates, and two new imputation estimates. Simulation studies suggest that the sample size should be substantially large (e.g. n=2000) for NPMLE and RHN to be more efficient than simpler imputation estimates. When the sample size is moderately large (n≤ 1500), simpler imputation estimates have as small a variance as semiparametric efficient estimates.  相似文献   

9.
We consider the issue of performing accurate small-sample testing inference in beta regression models, which are useful for modeling continuous variates that assume values in (0,1), such as rates and proportions. We derive the Bartlett correction to the likelihood ratio test statistic and also consider a bootstrap Bartlett correction. Using Monte Carlo simulations we compare the finite sample performances of the two corrected tests to that of the standard likelihood ratio test and also to its variant that employs Skovgaard's adjustment; the latter is already available in the literature. The numerical evidence favors the corrected tests we propose. We also present an empirical application.  相似文献   

10.
We develop a likelihood ratio test for an abrupt change point in Weibull hazard functions with covariates, including the two-piece constant hazard as a special case. We first define the log-likelihood ratio test statistic as the supremum of the profile log-likelihood ratio process over the interval which may contain an unknown change point. Using local asymptotic normality (LAN) and empirical measure, we show that the profile log-likelihood ratio process converges weakly to a quadratic form of Gaussian processes. We determine the critical values of the test and discuss how the test can be used for model selection. We also illustrate the method using the Chronic Granulomatous Disease (CGD) data.  相似文献   

11.
Asymptotic methods are commonly used in statistical inference for unknown parameters in binary data models. These methods are based on large sample theory, a condition which may be in conflict with small sample size and hence leads to poor results in the optimal designs theory. In this paper, we apply the second order expansions of the maximum likelihood estimator and derive a matrix formula for the mean square error (MSE) to obtain more precise optimal designs based on the MSE. Numerical results indicate the new optimal designs are more efficient than the optimal designs based on the information matrix.  相似文献   

12.
In this paper a new robust estimator, modified median estimator, is introduced and studied for the logistic regression model. This estimator is based on the median estimator considered in Hobza et al. [Robust median estimator in logistic regression. J Stat Plan Inference. 2008;138:3822–3840]. Its asymptotic distribution is obtained. Using the modified median estimator, we also consider a Wald-type test statistic for testing linear hypotheses in the logistic regression model and we obtain its asymptotic distribution under the assumption of random regressors. An extensive simulation study is presented in order to analyse the efficiency as well as the robustness of the modified median estimator and Wald-type test based on it.  相似文献   

13.
This paper develops alternatives to maximum likelihood estimators (MLE) for logistic regression models and compares the mean squared error (MSE) of the estimators. The MLE for the vector of underlying success probabilities has low MSE only when the true probabilities are extreme (i.e., near 0 or 1). Extreme probabilities correspond to logistic regression parameter vectors which are large in norm. A competing “restricted” MLE and an empirical version of it are suggested as estimators with better performance than the MLE for central probabilities. An approximate EM-algorithm for estimating the restriction is described. As in the case of normal theory ridge estimators, the proposed estimators are shown to be formally derivable by Bayes and empirical Bayes arguments. The small sample operating characteristics of the proposed estimators are compared to the MLE via a simulation study; both the estimation of individual probabilities and of logistic parameters are considered.  相似文献   

14.
This article presents methods for the construction of two-sided and one-sided simultaneous hyperbolic bands for the logistic and probit regression models when the predictor variable is restricted to a given interval. The bands are constructed based on the asymptotic properties of the maximum likelihood estimators. Past articles have considered building two-sided asymptotic confidence bands for the logistic model, such as Piegorsch and Casella (1988 Piegorsch, W.W., Casella, G. (1988). Confidence bands for logistic regression with restricted predictor variables. Biometrics 44:739750.[Crossref], [PubMed], [Web of Science ®] [Google Scholar]). However, the confidence bands given by Piegorsch and Casella are conservative under a single interval restriction, and it is shown in this article that their bands can be sharpened using the methods proposed here. Furthermore, no method has yet appeared in the literature for constructing one-sided confidence bands for the logistic model, and no work has been done for building confidence bands for the probit model, over a limited range of the predictor variable. This article provides methods for computing critical points in these areas.  相似文献   

15.
We consider m×mm×m covariance matrices, Σ1Σ1 and Σ2Σ2, which satisfy Σ2-Σ1Σ2-Σ1=Δ, where ΔΔ has a specified rank. Maximum likelihood estimators of Σ1Σ1 and Σ2Σ2 are obtained when sample covariance matrices having Wishart distributions are available and rank(Δ)rank(Δ) is known. The likelihood ratio statistic for a test about the value of rank(Δ)rank(Δ) is also given and some properties of its null distribution are obtained. The methods developed in this paper are illustrated through an example.  相似文献   

16.
The paper compares several versions of the likelihood ratio test for exponential homogeneity against mixtures of two exponentials. They are based on different implementations of the likelihood maximization algorithm. We show that global maximization of the likelihood is not appropriate to obtain a good power of the LR test. A simple starting strategy for the EM algorithm, which under the null hypothesis often fails to find the global maximum, results in a rather powerful test. On the other hand, a multiple starting strategy that comes close to global maximization under both the null and the alternative hypotheses leads to inferior power.  相似文献   

17.
In this paper we obtain asymptotic expansions, up to order n−1/2 and under a sequence of Pitman alternatives, for the nonnull distribution functions of the likelihood ratio, Wald, score and gradient test statistics in the class of symmetric linear regression models. This is a wide class of models which encompasses the t model and several other symmetric distributions with longer-than normal tails. The asymptotic distributions of all four statistics are obtained for testing a subset of regression parameters. Furthermore, in order to compare the finite-sample performance of these tests in this class of models, Monte Carlo simulations are presented. An empirical application to a real data set is considered for illustrative purposes.  相似文献   

18.
The importance of the normal distribution for fitting continuous data is well known. However, in many practical situations data distribution departs from normality. For example, the sample skewness and the sample kurtosis are far away from 0 and 3, respectively, which are nice properties of normal distributions. So, it is important to have formal tests of normality against any alternative. D'Agostino et al. [A suggestion for using powerful and informative tests of normality, Am. Statist. 44 (1990), pp. 316–321] review four procedures Z 2(g 1), Z 2(g 2), D and K 2 for testing departure from normality. The first two of these procedures are tests of normality against departure due to skewness and kurtosis, respectively. The other two tests are omnibus tests. An alternative to the normal distribution is a class of skew-normal distributions (see [A. Azzalini, A class of distributions which includes the normal ones, Scand. J. Statist. 12 (1985), pp. 171–178]). In this paper, we obtain a score test (W) and a likelihood ratio test (LR) of goodness of fit of the normal regression model against the skew-normal family of regression models. It turns out that the score test is based on the sample skewness and is of very simple form. The performance of these six procedures, in terms of size and power, are compared using simulations. The level properties of the three statistics LR, W and Z 2(g 1) are similar and close to the nominal level for moderate to large sample sizes. Also, their power properties are similar for small departure from normality due to skewness (γ1≤0.4). Of these, the score test statistic has a very simple form and computationally much simpler than the other two statistics. The LR statistic, in general, has highest power, although it is computationally much complex as it requires estimates of the parameters under the normal model as well as those under the skew-normal model. So, the score test may be used to test for normality against small departure from normality due to skewness. Otherwise, the likelihood ratio statistic LR should be used as it detects general departure from normality (due to both skewness and kurtosis) with, in general, largest power.  相似文献   

19.
We present a variational estimation method for the mixed logistic regression model. The method is based on a lower bound approximation of the logistic function [Jaakkola, J.S. and Jordan, M.I., 2000, Bayesian parameter estimation via variational methods. Statistics & Computing, 10, 25–37.]. Based on the approximation, an EM algorithm can be derived that results in a considerable simplification of the maximization problem in that it does not require the numerical evaluation of integrals over the random effects. We assess the performance of the variational method for the mixed logistic regression model in a simulation study and an empirical data example, and compare it to Laplace's method. The results indicate that the variational method is a viable choice for estimating the fixed effects of the mixed logistic regression model under the condition that the number of outcomes within each cluster is sufficiently high.  相似文献   

20.
A semiparametric logistic regression model is proposed in which its nonparametric component is approximated with fixed-knot cubic B-splines. To assess the linearity of the nonparametric component, we construct a penalized likelihood ratio test statistic. When the number of knots is fixed, the null distribution of the test statistic is shown to be asymptotically the distribution of a linear combination of independent chi-squared random variables, each with one degree of freedom. We set the asymptotic null expectation of this test statistic equal to a value to determine the smoothing parameter value. Monte Carlo experiments are conducted to investigate the performance of the proposed test. Its practical use is illustrated with a real-life example.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号