首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A cumulative sum control chart for multivariate Poisson distribution (MP-CUSUM) is proposed. The MP-CUSUM chart is constructed based on log-likelihood ratios with in-control parameters, Θ0, and shifts to be detected quickly, Θ1. The average run length (ARL) values are obtained using a Markov Chain-based method. Numerical experiments show that the MP-CUSUM chart is effective in detecting parameter shifts in terms of ARL. The MP-CUSUM chart with smaller Θ1 is more sensitive than that with greater Θ1 to smaller shifts, but more insensitive to greater shifts. A comparison shows that the proposed MP-CUSUM chart outperforms an existing MP chart.  相似文献   

2.
Standard control charts are often seriously in error when the distributional form of the observations differs from normality. Recently, control charts have been developed for larger parametric families. A third possibility is to apply a suitable (modified version of a) nonparametric control chart. This paper deals with the question when to switch from the control chart based on normality to a parametric control chart, or even to a nonparametric one. This model selection problem is solved by using the estimated model error as yardstick. It is shown that the new combined control chart asymptotically behaves as each of the specific control charts in their own domain. Simulations exhibit that the combined control chart performs very well under a great variety of distributions and hence it is recommended as an omnibus control chart, nicely adapted to the distribution at hand. The combined control chart is illustrated by an application on real data. The new modified nonparametric control chart is an attractive alternative and can be recommended as well.  相似文献   

3.
4.
Residual control charts are frequently used for monitoring autocorrelated processes. In the design of a residual control chart, values of the true process parameters are often estimated from a reference sample of in-control observations by using least squares (LS) estimators. We propose a robust control chart for autocorrelated data by using Modified Maximum Likelihood (MML) estimators in constructing a residual control chart. Average run length (ARL) is simulated for the proposed chart when the underlying process is AR(1). The results show the superiority of the new chart under several situations. Moreover, the chart is robust to plausible deviations from assumed distribution of errors.  相似文献   

5.
This study extends the generally weighted moving average (GWMA) control chart by imitating the double exponentially weighted moving average (DEWMA) technique. The proposed chart is called the double generally weighted moving average (DGWMA) control chart. Simulation is employed to evaluate the average run length characteristics of the GWMA, DEWMA and DGWMA control charts. An extensive comparison of these control charts reveals that the DGWMA control chart with time-varying control limits is more sensitive than the GWMA and the DEWMA control charts for detecting medium shifts in the mean of a process when the shifts are between 0.5 and 1.5 standard deviations. Additionally, the GWMA control chart performs better when the mean shifts are below the 0.5 standard deviation, and the DEWMA control performs better when the mean shifts are above the 1.5 standard deviation. The design of the DGWMA control chart is also discussed.  相似文献   

6.
A new S2 control chart is presented for monitoring the process variance by utilizing a repetitive sampling scheme. The double control limits called inner and outer control limits are proposed, whose coefficients are determined by considering the average run length (ARL) and the average sample number when the process is in control. The proposed control chart is compared with the existing Shewhart S2 control chart in terms of the ARLs. The result shows that the proposed control chart is more efficient than the existing control chart in detecting the process shift.  相似文献   

7.
Recently, several new applications of control chart procedures for short production runs have been introduced. Bothe (1989) and Burr (1989) proposed the use of control chart statistics which are obtained by scaling the quality characteristic by target values or process estimates of a location and scale parameter. The performance of these control charts can be significantly affected by the use of incorrect scaling parameters, resulting in either an excessive "false alarm rate," or insensitivity to the detection of moderate shifts in the process. To correct for these deficiencies, Quesenberry (1990, 1991) has developed the Q-Chart which is formed from running process estimates of the sample mean and variance. For the case where both the process mean and variance are unknown, the Q-chaxt statistic is formed from the standard inverse Z-transformation of a t-statistic. Q-charts do not perform correctly, however, in the presence of special cause disturbances at process startup. This has recently been supported by results published by Del Castillo and Montgomery (1992), who recommend the use of an alternative control chart procedure which is based upon a first-order adaptive Kalman filter model Consistent with the recommendations by Castillo and Montgomery, we propose an alternative short run control chart procedure which is based upon the second order dynamic linear model (DLM). The control chart is shown to be useful for the early detection of unwanted process trends. Model and control chart parameters are updated sequentially in a Bayesian estimation framework, providing the greatest degree of flexibility in the level of prior information which is incorporated into the model. The result is a weighted moving average control chart statistic which can be used to provide running estimates of process capability. The average run length performance of the control chart is compared to the optimal performance of the exponentially weighted moving average (EWMA) chart, as reported by Gan (1991). Using a simulation approach, the second order DLM control chart is shown to provide better overall performance than the EWMA for short production run applications  相似文献   

8.
The T 2 control chart is widely adopted in multivariate statistical process control. However, when dealing with asymmetrical or multimodal distributions using the traditional T 2 control chart, some points with relatively high occurrence possibility might be excluded, while some points with relatively low occurrence possibility might be accepted. Motived by the thought of the highest posterior density credible region, we develop a control chart based on the highest possibility region to solve this problem. It is shown that the proposed multivariate control chart will not only meet the false alarm requirement, but also ensure that all the in-control points are with relatively high occurrence possibility. The advantages and effectiveness of the proposed control chart are demonstrated by some numerical examples in the end.  相似文献   

9.
Although the classical Shewhart np control chart has been widely used to detect an out-of-control status of manufacturing process, it is static and there is lack of responsiveness to slight process changes. In this paper, an adaptive np control chart with a joint sampling strategy combining double sampling (DS) and variable sampling interval (VSI) is developed. The multiple dependent state sampling scheme is adopted to further improve the performance of the control chart. An economical design model to minimize the general cost of using the proposed chart is established and solved by a genetic algorithm. The numerical results show that comparing to traditional static np control chart, the proposed np chart yields better performance in terms of shorter time to signal an out-of-control process and less expected cost per unit of time. Comparisons are made to show the capability of the proposed chart in yielding average reductions of 5.01% and 8.89%, in the cost of the proposed model compared to situations in which either the DSVSI np chart or the traditional np chart is used.  相似文献   

10.
In this article, an attribute control chart is proposed for time truncated tests using the Weibull distribution. The design of proposed control chart is presented using the multiple dependent state (MDS) sampling. The control chart coefficients are determined for various specified average run length. The efficiency of the proposed control chart is elaborated with the help of a simulation data and a real data. The proposed control chart perform better than the existing control chart in terms of average run length.  相似文献   

11.
Cumulative count of conforming control chart is usually used to monitor fraction nonconforming in high-yield processes. In this article, we propose m-of-m control chart based on cumulative count of conforming units for high-yield processes. The steady-state properties of the m-of-m control chart are investigated. We compare performance of the m-of-m control chart with control chart based on cumulative count of conforming units. We present Markov chain model of the m-of-m control chart to evaluate average run length, standard deviation of run length and quartiles.  相似文献   

12.
A general model for the zone control chart is presented. Using this model, it is shown that there are score vectors for zone control charts which result in superior average run length performance in comparison to Shewhart charts with common runs rules.

A fast initial response (FIR) feature for the zone control chart is also proposed. Average run lengths of the zone control chart with this feature are calculated. It is shown that the FIR feature improves zone control chart performance by providing significantly earlier signals when the process is out of control.  相似文献   

13.
A synthetic mean square error (MSE) control chart is presented in this study for monitoring the changes in the mean and standard deviation of a normally distributed process. The synthetic MSE control chart is a combination of the standard MSE control chart and the conforming run length (CRL) control chart. From the numerical comparisons, the synthetic MSE control chart is always more efficient than the standard MSE control chart in detecting shifts in the process mean and standard deviation. The synthetic MSE chart also performs better than the exponentially weighted moving average-semicircle (EWMA-SC) chart, except for some cases where the process mean shifts are small.  相似文献   

14.
In modern quality control, it is becoming common to simultaneously monitor several quality characteristics of a process with rapid evolving data-acquisition technology. When the multivariate process distribution is unknown and only a set of in-control data is available, the bootstrap technique can be used to adjust the constant limit of the multivariate cumulative sum (MCUSUM) control chart. To further improve the performance of the control chart, we extend the constant control limit to a sequence of dynamic control limits which are determined by the conditional distribution of the charting statistics given the sprint length. Simulation results show that the novel control chart with dynamic control limits offers a better ARL performance, compared with the traditional MCUSUM control chart. Despite it, the proposed control chart is considerably computer-intensive. This leads to the development of a more flexible control chart which uses a continuous function of the sprint length as the control limit sequences. More importantly, the control chart is easy to implement and can reduce the computational time significantly. A white wine data illustrates that the novel control chart performs quite well in applications.  相似文献   

15.
The adaptive exponentially weighted moving average (AEWMA) control chart is a smooth combination of the Shewhart and exponentially weighted moving average (EWMA) control charts. This chart was proposed by Cappizzi and Masarotto (2003) to achieve a reasonable performance for both small and large shifts. Cappizzi and Masarotto (2003) used a pair of shifts in designing their control chart. In this study, however, the process mean shift is considered as a random variable with a certain probability distribution and the AEWMA control chart is optimized for a wide range of mean shifts according to that probability distribution and not just for a pair of shifts. Using the Markov chain technique, the results show that the new optimization design can improve the performance of the AEWMA control chart from an overall point of view relative to the various designs presented by Cappizzi and Masarotto (2003). Optimal design parameters that achieve the desired in-control average run length (ARL) are computed in several cases and formulas used to find approximately their values are given. Using these formulas, the practitioner can compute the optimal design parameters corresponding to any desired in-control ARL without the need to apply the optimization procedure. The results obtained by these formulas are very promising and would particularly facilitate the design of the AEWMA control chart for any in-control ARL value.  相似文献   

16.
A Tukey's control chart was designed to monitor single observation data. Its easy control-limits setting and simple statistical concept are the most important advantages. In this study, we setup the Tukey's control chart based on known probability distribution and construct its average run length calculator. ARL performance of the Tukey's control chart is evaluated under a normal distribution and non normal distributions, respectively. The comparison of ARL performance reveals that Tukey's control chart is not sensitive to shift detection when the process heavily violates the normal assumption. The number of observations needed for Tukey's control chart setup is less than Shewhart's control chart. Tukey's control chart is a better choice for the process mean monitoring.  相似文献   

17.
In this paper we introduce a spectral control chart that is designed to detect the onset of cyclic behaviour in a process, even in the presence of multiple cycles. This new spectral control chart is based on the periodogram test proposed by Bølviken (1983a, b). While no more difficult to implement than the traditional spectral control based on Fisher's test statistic, this new control chart shows improvement in detecting the presence of compound periodicity, which the chart based on Fisher's test is not designed to handle. This is assessed using Monte Carlo simulations to estimate and compare the average run lengths of several spectral control charts. In addition, the spectral control charts are applied to paper production data, published by Pandit & Wu (1993), in which the stock flow and paper thickness are monitored. The application of the new spectral control chart to the stock flow process detects out-of-control behaviour that is not found using standard control charts. This behaviour, in turn, appears to be related to out-of-control behaviour that is observed in the paper thickness measurements later in the production process.  相似文献   

18.
Average run lengths of the zone control chart are presented, The performance of this chart is compared with that of several Shewhart charts with and without runs rules, It is shown that the standard zone control chart has performance similar to some even simpler charts and a much higher false alarm rate than the Shewhart chart with all of the common runs rules. It is also shown that a slightly modified zone control chart outperforms the Shewhart chart with the common runs rules.  相似文献   

19.
An exponentially weighted moving average (EWMA) control chart of squared distance is developed by means of a double EWMA approach to monitor process dispersion with individual measurements distributed within the class of elliptically symmetric distributions. Several examples highlighting possible extensions of the control chart to multivariate processes are provided. In particular, for multivariate normal processes, an investigation on the detection power of the chart is carried out through Monte Carlo studies. The results show that the proposed control chart performs well, especially when a process has a small or moderate shift.  相似文献   

20.
Traditional control charts assume independence of observations obtained from the monitored process. However, if the observations are autocorrelated, these charts often do not perform as intended by the design requirements. Recently, several control charts have been proposed to deal with autocorrelated observations. The residual chart, modified Shewhart chart, EWMAST chart, and ARMA chart are such charts widely used for monitoring the occurrence of assignable causes in a process when the process exhibits inherent autocorrelation. Besides autocorrelation, one other issue is the unknown values of true process parameters to be used in the control chart design, which are often estimated from a reference sample of in-control observations. Performances of the above-mentioned control charts for autocorrelated processes are significantly affected by the sample size used in a Phase I study to estimate the control chart parameters. In this study, we investigate the effect of Phase I sample size on the run length performance of these four charts for monitoring the changes in the mean of an autocorrelated process, namely an AR(1) process. A discussion of the practical implications of the results and suggestions on the sample size requirements for effective process monitoring are provided.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号