首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Suppose that we have a nonparametric regression model Y = m(X) + ε with XRp, where X is a random design variable and is observed completely, and Y is the response variable and some Y-values are missing at random. Based on the “complete” data sets for Y after nonaprametric regression imputation and inverse probability weighted imputation, two estimators of the regression function m(x0) for fixed x0Rp are proposed. Asymptotic normality of two estimators is established, which is used to construct normal approximation-based confidence intervals for m(x0). We also construct an empirical likelihood (EL) statistic for m(x0) with limiting distribution of χ21, which is used to construct an EL confidence interval for m(x0).  相似文献   

2.
3.
In this article we deal with simultaneous two-sided tolerance intervals for a univariate linear regression model with independent normally distributed errors. We present a method for determining the intervals derived by the general confidence-set approach (GCSA), i.e. the intervals are constructed based on a specified confidence set for unknown parameters of the model. The confidence set used in the new method is formed based on a suggested hypothesis test about all parameters of the model. The simultaneous two-sided tolerance intervals determined by the presented method are found to be efficient and fast to compute based on a preliminary numerical comparison of all the existing methods based on GCSA.  相似文献   

4.
The problems of constructing tolerance intervals for the binomial and Poisson distributions are considered. Closed-form approximate equal-tailed tolerance intervals (that control percentages in both tails) are proposed for both distributions. Exact coverage probabilities and expected widths are evaluated for the proposed equal-tailed tolerance intervals and the existing intervals. Furthermore, an adjustment to the nominal confidence level is suggested so that an equal-tailed tolerance interval can be used as a tolerance interval which includes a specified proportion of the population, but does not necessarily control percentages in both tails. Comparison of such coverage-adjusted tolerance intervals with respect to coverage probabilities and expected widths indicates that the closed-form approximate tolerance intervals are comparable with others, and less conservative, with minimum coverage probabilities close to the nominal level in most cases. The approximate tolerance intervals are simple and easy to compute using a calculator, and they can be recommended for practical applications. The methods are illustrated using two practical examples.  相似文献   

5.
Several variations of monotone nonparametric regression have been developed over the past 30 years. One approach is to first apply nonparametric regression to data and then monotone smooth the initial estimates to “iron out” violations to the assumed order. Here, such estimators are considered, where local polynomial regression is first used, followed by either least squares isotonic regression or a monotone method using simple averages. The primary focus of this work is to evaluate different types of confidence intervals for these monotone nonparametric regression estimators through Monte Carlo simulation. Most of the confidence intervals use bootstrap or jackknife procedures. Estimation of a response variable as a function of two continuous predictor variables is considered, where the estimation is performed at the observed values of the predictors (instead of on a grid). The methods are then applied to data involving subjects that worked at plants that use beryllium metal who have developed chronic beryllium disease.  相似文献   

6.
Despite the simplicity of the Bernoulli process, developing good confidence interval procedures for its parameter—the probability of success p—is deceptively difficult. The binary data yield a discrete number of successes from a discrete number of trials, n. This discreteness results in actual coverage probabilities that oscillate with the n for fixed values of p (and with p for fixed n). Moreover, this oscillation necessitates a large sample size to guarantee a good coverage probability when p is close to 0 or 1.

It is well known that the Wilson procedure is superior to many existing procedures because it is less sensitive to p than any other procedures, therefore it is less costly. The procedures proposed in this article work as well as the Wilson procedure when 0.1 ≤p ≤ 0.9, and are even less sensitive (i.e., more robust) than the Wilson procedure when p is close to 0 or 1. Specifically, when the nominal coverage probability is 0.95, the Wilson procedure requires a sample size 1, 021 to guarantee that the coverage probabilities stay above 0.92 for any 0.001 ≤ min {p, 1 ?p} <0.01. By contrast, our procedures guarantee the same coverage probabilities but only need a sample size 177 without increasing either the expected interval width or the standard deviation of the interval width.  相似文献   

7.
Traditional Box–Jenkins prediction intervals perform poorly when the innovations are not Gaussian. Nonparametric bootstrap procedures overcome this handicap, but most existing methods assume that the AR and MA orders of the process are known. The sieve bootstrap approach requires no such assumption but produces liberal coverage due to the use of residuals that underestimate the actual variance of the innovations and the failure of the methods to capture variations due to sampling error of the mean. A modified approach, that corrects these deficiencies, is implemented. Monte Carlo simulations results show that the modified version achieves nominal or near nominal coverage.  相似文献   

8.
Motivated by covariate-adjusted regression (CAR) proposed by Sentürk and Müller (2005 Sentürk , D. , Müller , H. G. ( 2005 ). Covariate-adjusted regression . Biometrika 92 : 7589 .[Crossref], [Web of Science ®] [Google Scholar]) and an application problem, in this article we introduce and investigate a covariate-adjusted partially linear regression model (CAPLM), in which both response and predictor vector can only be observed after being distorted by some multiplicative factors, and an additional variable such as age or period is taken into account. Although our model seems to be a special case of covariate-adjusted varying coefficient model (CAVCM) given by Sentürk (2006 Sentürk , D. ( 2006 ). Covariate-adjusted varying coefficient models . Biostatistics 7 : 235251 .[Crossref], [PubMed], [Web of Science ®] [Google Scholar]), the data types of CAPLM and CAVCM are basically different and then the methods for inferring the two models are different. In this article, the estimate method motivated by Cui et al. (2008 Cui , X. , Guo , W. S. , Lin , L. , Zhu , L. X. ( 2008 ). Covariate-adjusted nonlinear regression . Ann. Statist. 37 : 18391870 . [Google Scholar]) is employed to infer the new model. Furthermore, under some mild conditions, the asymptotic normality of estimator for the parametric component is obtained. Combined with the consistent estimate of asymptotic covariance, we obtain confidence intervals for the regression coefficients. Also, some simulations and a real data analysis are made to illustrate the new model and methods.  相似文献   

9.
Many of the existing methods of finding calibration intervals in simple linear regression rely on the inversion of prediction limits. In this article, we propose an alternative procedure which involves two stages. In the first stage, we find a confidence interval for the value of the explanatory variable which corresponds to the given future value of the response. In the second stage, we enlarge the confidence interval found in the first stage to form a confidence interval called, calibration interval, for the value of the explanatory variable which corresponds to the theoretical mean value of the future observation. In finding the confidence interval in the first stage, we have used the method based on hypothesis testing and percentile bootstrap. When the errors are normally distributed, the coverage probability of resulting calibration interval based on hypothesis testing is comparable to that of the classical calibration interval. In the case of non normal errors, the coverage probability of the calibration interval based on hypothesis testing is much closer to the target value than that of the calibration interval based on percentile bootstrap.  相似文献   

10.
Principal components regression (PCR) is used in resolving the multicollinearity problem but specification bias occurs due to the selection only of the important principal components to be included resulting in the deterioration of predictive ability of the model. We propose the PCR in a nonparametric framework to address the multicollinearity problem while minimizing the specification bias that affects predictive ability of the model. The simulation study illustrated that nonparametric PCR addresses the multicollinearity problem while retaining higher predictive ability relative to parametric principal components regression model.  相似文献   

11.
In the article, we consider the unbalanced case of the two-way nested random effects model under partial balance. Using the method of generalized confidence intervals (GCIs) introduced in Weeranhandi (1993 Weeranhandi , S. ( 1993 ). Generalized confidence intervals . J. Amer. Statist. Assoc. 88 : 899905 .[Taylor & Francis Online], [Web of Science ®] [Google Scholar] 1995 Weeranhandi , S. ( 1995 ). Exact Statistical Methods for Data Analysis . New York : Springer-Verlag . [Google Scholar]), a new method is proposed for constructing confidence intervals on linear function of variance components. To compare the resulted intervals with the Modified Large Sample (MLS) intervals by Hernandez and Burdick (1993 Hernandez , R. P. , Burdick , R. K. ( 1993 ). Confidence intervals on the total variance in unbalanced two-fold nested designs . Biom. J. 35 : 515522 .[Crossref] [Google Scholar]), a simulation study is conducted. The results indicate that the proposed method performs better than the MLS method, especially for very unbalanced designs.  相似文献   

12.
Regression Kink With an Unknown Threshold   总被引:1,自引:0,他引:1  
This article explores estimation and inference in a regression kink model with an unknown threshold. A regression kink model (or continuous threshold model) is a threshold regression constrained to be everywhere continuous with a kink at an unknown threshold. We present methods for estimation, to test for the presence of the threshold, for inference on the regression parameters, and for inference on the regression function. A novel finding is that inference on the regression function is nonstandard since the regression function is a nondifferentiable function of the parameters. We apply recently developed methods for inference on nondifferentiable functions. The theory is illustrated by an application to the growth and debt problem introduced by Reinhart and Rogoff, using their long-span time-series for the United States.  相似文献   

13.
Nonparametric regression can be considered as a problem of model choice. In this article, we present the results of a simulation study in which several nonparametric regression techniques including wavelets and kernel methods are compared with respect to their behavior on different test beds. We also include the taut-string method whose aim is not to minimize the distance of an estimator to some “true” generating function f but to provide a simple adequate approximation to the data. Test beds are situations where a “true” generating f exists and in this situation it is possible to compare the estimates of f with f itself. The measures of performance we use are the L2- and the L-norms and the ability to identify peaks.  相似文献   

14.
I hybrid significance test, which blends exact and asymptotic theory in a unique way, is presided as an alternative to Fisher's exact test for unordered rxc contingency tables. The hybrid test is almost equivlent to Fisher's exact test, but requires considerably less computational effort The accuracy of the hybrid p-value is not compromised by sparse contingency tables.  相似文献   

15.
Abstract.  A simple and standard approach for analysing multistate model data is to model all transition intensities and then compute a summary measure such as the transition probabilities based on this. This approach is relatively simple to implement but it is difficult to see what the covariate effects are on the scale of interest. In this paper, we consider an alternative approach that directly models the covariate effects on transition probabilities in multistate models. Our new approach is based on binomial modelling and inverse probability of censoring weighting techniques and is very simple to implement by standard software. We show how to do flexible regression models with possibly time-varying covariate effects.  相似文献   

16.
In multiple comparisons of fixed effect parameters in linear mixed models, treatment effects can be reported as relative changes or ratios. Simultaneous confidence intervals for such ratios had been previously proposed based on Bonferroni adjustments or multivariate normal quantiles accounting for the correlation among the multiple contrasts. We propose Fieller-type intervals using multivariate t quantiles and the application of Markov chain Monte Carlo techniques to sample from the joint posterior distribution and construct percentile-based simultaneous intervals. The methods are compared in a simulation study including bioassay problems with random intercepts and slopes, repeated measurements designs, and multicenter clinical trials.  相似文献   

17.
Quadratic programming is a versatile tool for calculating estimates in penalized regression. It can be used to produce estimates based on L 1 roughness penalties, as in total variation denoising. In particular, it can calculate estimates when the roughness penalty is the total variation of a derivative of the estimate. Combining two roughness penalties, the total variation and total variation of the third derivative, results in an estimate with continuous second derivative but controls the number of spurious local extreme values. A multiresolution criterion may be included in a quadratic program to achieve local smoothing without having to specify smoothing parameters.  相似文献   

18.
Suppose we have {(x i , y i )} i = 1, 2,…, n, a sequence of independent observations. We wish to find approximate 1 ? α simultaneous confidence bands for the regression curve. Many previous confidence bands in the literature have practical difficulties. In this article, the local linear smoother is used to estimate the regression curve. The bias of the estimator is considered. Different methods of constructing confidence bands are discussed. Finally, a possible method incorporating logistic regression in an innovative way is proposed to construct the bands for random designs. Simulations are used to study the performance or properties of the methods. The procedure for constructing confidence bands is entirely data-driven. The advantage of the proposed method is that it is simple to use and can be applied to random designs. It can be considered as a practically useful and efficient method.  相似文献   

19.
Semiparametric regression models have been proposed in the econometric literature as a trade-off between the simple but easily implementable and interpretable parametric models and the flexible but structure free smoothing techniques. Some semiparametric models for binary response with possible application to scoring data are reviewed: single-index models, generalized partially linear models, generalized partially linear single-index models, and multiple-index models. All these models are extensions of the classical logistic regression.  相似文献   

20.
Recently, the methods used to estimate monotonic regression (MR) models have been substantially improved, and some algorithms can now produce high-accuracy monotonic fits to multivariate datasets containing over a million observations. Nevertheless, the computational burden can be prohibitively large for resampling techniques in which numerous datasets are processed independently of each other. Here, we present efficient algorithms for estimation of confidence limits in large-scale settings that take into account the similarity of the bootstrap or jackknifed datasets to which MR models are fitted. In addition, we introduce modifications that substantially improve the accuracy of MR solutions for binary response variables. The performance of our algorithms is illustrated using data on death in coronary heart disease for a large population. This example also illustrates that MR can be a valuable complement to logistic regression.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号