首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
“Nonparametric” in the title is used to say that observations X 1,…,X n come from an unknown distribution F ∈ ? with ? being the class of all continuous and strictly increasing distribution functions. The problem is to estimate the quantile of a given order q ∈ (0,1) of the distribution F. The class ? of distributions is very large; it is so large that even X nq:n , where nq is an integer, may be very poor estimator of the qth quantile. To assess the performance of estimators no properties based on moments may be used: expected values of estimators should be replaced by their medians, their variances—by some characteristics of concentration of distributions around the median. If an estimator is median-biased for one of distributions, the bias of the estimator may be infinitely large for other distributions. In the note optimal estimators with respect to various criteria of optimality are presented. The pivotal function F(T) of the estimator T is introduced which enables us to apply the classical statistical approach.  相似文献   

2.
The two parametric distribution functions appearing in the extreme-value theory – the generalized extreme-value distribution and the generalized Pareto distribution – have log-concave densities if the extreme-value index γ∈[?1, 0]. Replacing the order statistics in tail-index estimators by their corresponding quantiles from the distribution function that is based on the estimated log-concave density ? f n leads to novel smooth quantile and tail-index estimators. These new estimators aim at estimating the tail index especially in small samples. Acting as a smoother of the empirical distribution function, the log-concave distribution function estimator reduces estimation variability to a much greater extent than it introduces bias. As a consequence, Monte Carlo simulations demonstrate that the smoothed version of the estimators are well superior to their non-smoothed counterparts, in terms of mean-squared error.  相似文献   

3.
Consider distributions F and G such that G -1 F is star-shaped. In the problem of estimating the quantile functions for lifetime distributions, the estimators developed by Rojo (1998) are compared with the commonly used empirical quantile function. Both the one-sample and the two-sample methods of estimation are considered for a wide class of lifetime distributions. In addition, the behavior of the estimators is examined for star-shaped ordered lifetime distributions of the important class of coherent k- out-of-n reliability systems. Results of a Monte Carlo study are presented which compare the behavior of the new estimators with that of the empirical quantile function interms of bias and mean-squared error. As the behavior of these estimators typically depends on the tail behavior of the underlying distributions, the examples presented here include distributions with short, medium and long tails. A formula for the inverse of the Kaplan-Meier estimator is provided and used to generate the simulations in the case of censored data.  相似文献   

4.
In this article, we use the peaks over random threshold (PORT)-methodology, and consider Hill and moment PORT-classes of extreme value index estimators. These classes of estimators are invariant not only to changes in scale, like the classical Hill and moment estimators, but also to changes in location. They are based on the sample of excesses over a random threshold, the order statistic X [np]+1:n , 0 ≤ p < 1, being p a tuning parameter, which makes them highly flexible. Under convenient restrictions on the underlying model, these classes of estimators are consistent and asymptotically normal for adequate values of k, the number of top order statistics used in the semi-parametric estimation of the extreme value index γ. In practice, there may however appear a stability around a value distant from the target γ when the minimum is chosen for the random threshold, and attention is drawn for the danger of transforming the original data through the subtraction of the minimum. A new bias-corrected moment estimator is also introduced. The exact performance of the new extreme value index PORT-estimators is compared, through a large-scale Monte-Carlo simulation study, with the original Hill and moment estimators, the bias-corrected moment estimator, and one of the minimum-variance reduced-bias (MVRB) extreme value index estimators recently introduced in the literature. As an empirical example we estimate the tail index associated to a set of real data from the field of finance.  相似文献   

5.
Let Π1, …, Π p be p(p≥2) independent Poisson populations with unknown parameters θ1, …, θ p , respectively. Let X i denote an observation from the population Π i , 1≤ip. Suppose a subset of random size, which includes the best population corresponding to the largest (smallest) θ i , is selected using Gupta and Huang [On subset selection procedures for Poisson populations and some applications to the multinomial selection problems, in Applied Statistics, R.P. Gupta, ed., North-Holland, Amsterdam, 1975, pp. 97–109] and (Gupta et al. [On subset selection procedures for Poisson populations, Bull. Malaysian Math. Soc. 2 (1979), pp. 89–110]) selection rule. In this paper, the problem of estimating the average worth of the selected subset is considered under the squared error loss function. The natural estimator is shown to be biased and the UMVUE is obtained using Robbins [The UV method of estimation, in Statistical Decision Theory and Related Topics-IV, S.S. Gupta and J.O. Berger, eds., Springer, New York, vol. 1, 1988, pp. 265–270] UV method of estimation. The natural estimator is shown to be inadmissible, by constructing a class of dominating estimators. Using Monte Carlo simulations, the bias and risk of the natural, dominated and UMVU estimators are computed and compared.  相似文献   

6.
Let X1, …, Xp be independent random variables, all having the same distribution up to a possibly varying unspecified parameter, where each of the p distributions belongs to the family of one parameter discrete exponential distributions. The problem is to estimate the unknown parameters simultaneously. Hudson (1978) shows that the minimum variance unbiased estimator (MVUE) of the parameters is inadmissible under squared error loss, and estimators better than the MVUE are proposed. Essentially, these estimators shrink the MVUE towards the origin. In this paper, we indicate that estimators shifting the MVUE towards a point different from the origin or a point determined by the observations can be obtained.  相似文献   

7.
Let X 1, X 2, ..., X n be a random sample from a normal population with mean μ and variance σ 2. In many real life situations, specially in lifetime or reliability estimation, the parameter μ is known a priori to lie in an interval [a, ∞). This makes the usual maximum likelihood estimator (MLE) ̄ an inadmissible estimator of μ with respect to the squared error loss. This is due to the fact that it may take values outside the parameter space. Katz (1961) and Gupta and Rohatgi (1980) proposed estimators which lie completely in the given interval. In this paper we derive some new estimators for μ and present a comparative study of the risk performance of these estimators. Both the known and unknown variance cases have been explored. The new estimators are shown to have superior risk performance over the existing ones over large portions of the parameter space.  相似文献   

8.
Greenwich and Jahr-Schaffrath (1995) introduced a new index C pp a simple transformation of the index C pm , which provides an uncontaminated separation between information concerning process accuracy and process precision. Under the assumption of normality, we first show that the estimators of C pp proposed by Greenwich and Jahr-Schaffrath (1995) are UMVU estimators. We also show that for the inaccuracy index, the variance of the unbiased estimator is smaller than the mean squared error (MSE) of the natural (biased) estimator for n > 3. In addition, we obtain the r-th moment and the probability density function of these estimators.  相似文献   

9.
Vannman has earlier studied a class of capability indices, containing the indices C p , C pk , C pm and C pmk , when the tolerances are symmetric. We study the properties of this class when the tolerances are asymmetric and suggest a new enlargened class of indices. Under the assumption of normality an explicit form of the distribution of the new class of the estimated indices is provided. Numerical investigations are made to explore the behavior of the estimators of the indices for different values of the parameters. Based on the estimator a decision rule that can be used to determine whether the process can be considered capable or not is provided and suitable criteria for choosing an index from the family are suggested.  相似文献   

10.
Let Sp × p have a Wishart distribution with parameter matrix Σ and n degrees of freedom. We consider here the problem of estimating the precision matrix Σ?1 under the loss functions L1(σ) tr (σ) - log |σ| and L2(σ) = tr (σ). James-Stein-type estimators have been derived for an arbitrary p. We also obtain an orthogonal invariant and a diagonal invariant minimax estimator under both loss functions. A Monte-Carlo simulation study indicates that the risk improvement of the orthogonal invariant estimators over the James-Stein type estimators, the Haff (1979) estimator, and the “testimator” given by Sinha and Ghosh (1987) is substantial.  相似文献   

11.
The generalized method of moments (GMM) and empirical likelihood (EL) are popular methods for combining sample and auxiliary information. These methods are used in very diverse fields of research, where competing theories often suggest variables satisfying different moment conditions. Results in the literature have shown that the efficient‐GMM (GMME) and maximum empirical likelihood (MEL) estimators have the same asymptotic distribution to order n?1/2 and that both estimators are asymptotically semiparametric efficient. In this paper, we demonstrate that when data are missing at random from the sample, the utilization of some well‐known missing‐data handling approaches proposed in the literature can yield GMME and MEL estimators with nonidentical properties; in particular, it is shown that the GMME estimator is semiparametric efficient under all the missing‐data handling approaches considered but that the MEL estimator is not always efficient. A thorough examination of the reason for the nonequivalence of the two estimators is presented. A particularly strong feature of our analysis is that we do not assume smoothness in the underlying moment conditions. Our results are thus relevant to situations involving nonsmooth estimating functions, including quantile and rank regressions, robust estimation, the estimation of receiver operating characteristic (ROC) curves, and so on.  相似文献   

12.
In this paper, we deal with the estimation, under a semi-parametric framework, of the Value-at-Risk (VaR) at a level p, the size of the loss occurred with a small probability p. Under such a context, the classical VaR estimators are the Weissman–Hill estimators, based on any intermediate number k of top-order statistics. But these VaR estimators do not enjoy the adequate linear property of quantiles, contrarily to the PORT VaR estimators, which depend on an extra tuning parameter q, with 0≤q<1. We shall here consider ‘quasi-PORT’ reduced-bias VaR estimators, for which such a linear property is obtained approximately. They are based on a partially shifted version of a minimum-variance reduced-bias (MVRB) estimator of the extreme value index (EVI), the primary parameter in Statistics of Extremes. Due to the stability on k of the MVRB EVI and associated VaR estimates, we propose the use of a heuristic stability criterion for the choice of k and q, providing applications of the methodology to simulated data and to log-returns of financial stocks.  相似文献   

13.
In this paper, a new estimator combined estimator (CE) is proposed for estimating the finite population mean ¯ Y N in simple random sampling assuming a long-tailed symmetric super-population model. The efficiency and robustness properties of the CE is compared with the widely used and well-known estimators of the finite population mean ¯ Y N by Monte Carlo simulation. The parameter estimators considered in this study are the classical least squares estimator, trimmed mean, winsorized mean, trimmed L-mean, modified maximum-likelihood estimator, Huber estimator (W24) and the non-parametric Hodges–Lehmann estimator. The mean square error criteria are used to compare the performance of the estimators. We show that the CE is overall more efficient than the other estimators. The CE is also shown to be more robust for estimating the finite population mean ¯ Y N , since it is insensitive to outliers and to misspecification of the distribution. We give a real life example.  相似文献   

14.
Assume that X 1, X 2,…, X n is a sequence of i.i.d. random variables with α-stable distribution (α ∈ (0,2], the stable exponent, is the unknown parameter). We construct minimum distance estimators for α by minimizing the Kolmogorov distance or the Cramér–von-Mises distance between the empirical distribution function G n , and a class of distributions defined based on the sum-preserving property of stable random variables. The minimum distance estimators can also be obtained by minimizing a U-statistic estimate of an empirical distribution function involving the stable exponent. They share the same invariance property with the maximum likelihood estimates. In this article, we prove the strong consistency of the minimum distance estimators. We prove the asymptotic normality of our estimators. Simulation study shows that the new estimators are competitive to the existing ones and perform very closely even to the maximum likelihood estimator.  相似文献   

15.
ABSTARCT

In this paper we have suggested a class of unbiased estimators of πS, the proportion of respondents possessing a sensitive attribute A using mixed randomized response model. The variance of the proposed class of estimators has been obtained. In addition to Kim and Warde's (2005) estimator, several other acceptable estimators of πS have been identified from the proposed class for suitable weights. It has been shown that the newly identified estimators are more efficient than the Kim and Warde's (2005) estimator. Numerical illustrations and graphs are also given in support of the present study.  相似文献   

16.
Two‐phase sampling is often used for estimating a population total or mean when the cost per unit of collecting auxiliary variables, x, is much smaller than the cost per unit of measuring a characteristic of interest, y. In the first phase, a large sample s1 is drawn according to a specific sampling design p(s1) , and auxiliary data x are observed for the units is1 . Given the first‐phase sample s1 , a second‐phase sample s2 is selected from s1 according to a specified sampling design {p(s2s1) } , and (y, x) is observed for the units is2 . In some cases, the population totals of some components of x may also be known. Two‐phase sampling is used for stratification at the second phase or both phases and for regression estimation. Horvitz–Thompson‐type variance estimators are used for variance estimation. However, the Horvitz–Thompson ( Horvitz & Thompson, J. Amer. Statist. Assoc. 1952 ) variance estimator in uni‐phase sampling is known to be highly unstable and may take negative values when the units are selected with unequal probabilities. On the other hand, the Sen–Yates–Grundy variance estimator is relatively stable and non‐negative for several unequal probability sampling designs with fixed sample sizes. In this paper, we extend the Sen–Yates–Grundy ( Sen , J. Ind. Soc. Agric. Statist. 1953; Yates & Grundy , J. Roy. Statist. Soc. Ser. B 1953) variance estimator to two‐phase sampling, assuming fixed first‐phase sample size and fixed second‐phase sample size given the first‐phase sample. We apply the new variance estimators to two‐phase sampling designs with stratification at the second phase or both phases. We also develop Sen–Yates–Grundy‐type variance estimators of the two‐phase regression estimators that make use of the first‐phase auxiliary data and known population totals of some of the auxiliary variables.  相似文献   

17.
The restricted minimum φ-divergence estimator, [Pardo, J.A., Pardo, L. and Zografos, K., 2002, Minimum φ-divergence estimators with constraints in multinomial populations. Journal of Statistical Planning and Inference, 104, 221–237], is employed to obtain estimates of the cell frequencies of an I×I contingency table under hypotheses of symmetry, marginal homogeneity or quasi-symmetry. The associated φ-divergence statistics are distributed asymptotically as chi-squared distributions under the null hypothesis. The new estimators and test statistics contain, as particular cases, the classical estimators and test statistics previously presented in the literature for the cited problems. A simulation study is presented, for the symmetry problem, to choose the best function φ2 for estimation and the best function φ1 for testing.  相似文献   

18.
Jump-detection and curve estimation methods for the discontinuous regression function are proposed in this article. First, two estimators of the regression function based on B-splines are considered. The first estimator is obtained when the knot sequence is quasi-uniform; by adding a knot with multiplicity p + 1 at a fixed point x0 on support [a, b], we can obtain the second estimator. Then, the jump locations are detected by the performance of the difference of the residual sum of squares DRSS(x0) (x0 ∈ (a, b)); subsequently the regression function with jumps can be fitted based on piecewise B-spline function. Asymptotic properties are established under some mild conditions. Several numerical examples using both simulated and real data are presented to evaluate the performance of the proposed method.  相似文献   

19.
20.
ABSTRACT

This article considers the estimation of a distribution function FX(x) based on a random sample X1, X2, …, Xn when the sample is suspected to come from a close-by distribution F0(x). The new estimators, namely the preliminary test (PTE) and Stein-type estimator (SE) are defined and compared with the “empirical distribution function” (edf) under local departure. In this case, we show that Stein-type estimators are superior to edf and PTE is superior to edf when it is close to F0(x). As a by-product similar estimators are proposed for population quantiles.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号