首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 468 毫秒
1.
The experimental design literature has produced a wide range of algorithms optimizing estimator variance for linear models where the design-space is finite or a convex polytope. But these methods have problems handling nonlinear constraints or constraints over multiple treatments. This paper presents Newton-type algorithms to compute exact optimal designs in models with continuous and/or discrete regressors, where the set of feasible treatments is defined by nonlinear constraints. We carry out numerical comparisons with other state-of-art methods to show the performance of this approach.  相似文献   

2.
A well-known problem is that ordinary least squares estimation of the parameters in the usual linear model can be highly ineficient when the error term has a heavy-tailed distribution. Inefficiency is also associated with situations where the error term is heteroscedastic, and standard confidence intervals can have probability coverage substantially different from the nominal level. This paper compares the small-sample efficiency of six methods that address this problem, three of which model the variance heterogeneity nonparametrically. Three methods were found to be relatively ineffective, but the other three perform relatively well. One of the six (M-regression with a Huber φ function and Schweppe weights) was found to have the highest efficiency for most of the situations considered in the simulations, but there might be situations where one of two other methods gives better results. One of these is a new method that uses a running interval smoother to estimate the optimal weights in weighted least squares, and the other is a method recently proposed by Cohen, Dalal, and Tukey. Computing a confidence interval for the slope using a bootstrap technique is also considered.  相似文献   

3.
In this paper, A variance decomposition approach to quantify the effects of endogenous and exogenous variables for nonlinear time series models is developed. This decomposition is taken temporally with respect to the source of variation. The methodology uses Monte Carlo methods to affect the variance decomposition using the ANOVA-like procedures proposed in Archer et al. (J. Stat. Comput. Simul. 58:99–120, 1997), Sobol’ (Math. Model. 2:112–118, 1990). The results of this paper can be used in investment problems, biomathematics and control theory, where nonlinear time series with multiple inputs are encountered.  相似文献   

4.
Mixed effects models or random effects models are popular for the analysis of longitudinal data. In practice, longitudinal data are often complex since there may be outliers in both the response and the covariates and there may be measurement errors. The likelihood method is a common approach for these problems but it can be computationally very intensive and sometimes may even be computationally infeasible. In this article, we consider approximate robust methods for nonlinear mixed effects models to simultaneously address outliers and measurement errors. The approximate methods are computationally very efficient. We show the consistency and asymptotic normality of the approximate estimates. The methods can also be extended to missing data problems. An example is used to illustrate the methods and a simulation is conducted to evaluate the methods.  相似文献   

5.
We propose a new stochastic approximation (SA) algorithm for maximum-likelihood estimation (MLE) in the incomplete-data setting. This algorithm is most useful for problems when the EM algorithm is not possible due to an intractable E-step or M-step. Compared to other algorithm that have been proposed for intractable EM problems, such as the MCEM algorithm of Wei and Tanner (1990), our proposed algorithm appears more generally applicable and efficient. The approach we adopt is inspired by the Robbins-Monro (1951) stochastic approximation procedure, and we show that the proposed algorithm can be used to solve some of the long-standing problems in computing an MLE with incomplete data. We prove that in general O(n) simulation steps are required in computing the MLE with the SA algorithm and O(n log n) simulation steps are required in computing the MLE using the MCEM and/or the MCNR algorithm, where n is the sample size of the observations. Examples include computing the MLE in the nonlinear error-in-variable model and nonlinear regression model with random effects.  相似文献   

6.
The authors propose a bootstrap procedure which estimates the distribution of an estimating function by resampling its terms using bootstrap techniques. Studentized versions of this so‐called estimating function (EF) bootstrap yield methods which are invariant under reparametrizations. This approach often has substantial advantage, both in computation and accuracy, over more traditional bootstrap methods and it applies to a wide class of practical problems where the data are independent but not necessarily identically distributed. The methods allow for simultaneous estimation of vector parameters and their components. The authors use simulations to compare the EF bootstrap with competing methods in several examples including the common means problem and nonlinear regression. They also prove symptotic results showing that the studentized EF bootstrap yields higher order approximations for the whole vector parameter in a wide class of problems.  相似文献   

7.
This paper extends methods for nonlinear regression analysis that have developed for the analysis of clustered data. Its novelty lies in its dual incorporation of random cluster effects and structural error in the measurement of the explanatory variables. Moments up to second order are assumed to have been specified for the latter to enable a generalized estimating equations approach to be used for fitting and testing nonlinear models linking response to these explanatory variables and random effects. Taylor expansion methods are used, and a difficulty with earlier approaches overcome. Finally we describe an application of this methodology to indicate how it can be used. That application concerns the degree of association of hospital admissions for acute respiratory health problems and air pollution.  相似文献   

8.
ABSTRACT

We propose a new semiparametric Weibull cure rate model for fitting nonlinear effects of explanatory variables on the mean, scale and cure rate parameters. The regression model is based on the generalized additive models for location, scale and shape, for which any or all distribution parameters can be modeled as parametric linear and/or nonparametric smooth functions of explanatory variables. We present methods to select additive terms, model estimation and validation, where all computational codes are presented in a simple way such that any R user can fit the new model. Biases of the parameter estimates caused by models specified erroneously are investigated through Monte Carlo simulations. We illustrate the usefulness of the new model by means of two applications to real data. We provide computational codes to fit the new regression model in the R software.  相似文献   

9.
Inequality-restricted hypotheses testing methods containing multivariate one-sided testing methods are useful in practice, especially in multiple comparison problems. In practice, multivariate and longitudinal data often contain missing values since it may be difficult to observe all values for each variable. However, although missing values are common for multivariate data, statistical methods for multivariate one-sided tests with missing values are quite limited. In this article, motivated by a dataset in a recent collaborative project, we develop two likelihood-based methods for multivariate one-sided tests with missing values, where the missing data patterns can be arbitrary and the missing data mechanisms may be non-ignorable. Although non-ignorable missing data are not testable based on observed data, statistical methods addressing this issue can be used for sensitivity analysis and might lead to more reliable results, since ignoring informative missingness may lead to biased analysis. We analyse the real dataset in details under various possible missing data mechanisms and report interesting findings which are previously unavailable. We also derive some asymptotic results and evaluate our new tests using simulations.  相似文献   

10.
Recently, several new robust multivariate estimators of location and scatter have been proposed that provide new and improved methods for detecting multivariate outliers. But for small sample sizes, there are no results on how these new multivariate outlier detection techniques compare in terms of p n , their outside rate per observation (the expected proportion of points declared outliers) under normality. And there are no results comparing their ability to detect truly unusual points based on the model that generated the data. Moreover, there are no results comparing these methods to two fairly new techniques that do not rely on some robust covariance matrix. It is found that for an approach based on the orthogonal Gnanadesikan–Kettenring estimator, p n can be very unsatisfactory with small sample sizes, but a simple modification gives much more satisfactory results. Similar problems were found when using the median ball algorithm, but a modification proved to be unsatisfactory. The translated-biweights (TBS) estimator generally performs well with a sample size of n≥20 and when dealing with p-variate data where p≤5. But with p=8 it can be unsatisfactory, even with n=200. A projection method as well the minimum generalized variance method generally perform best, but with p≤5 conditions where the TBS method is preferable are described. In terms of detecting truly unusual points, the methods can differ substantially depending on where the outliers happen to be, the number of outliers present, and the correlations among the variables.  相似文献   

11.
In this paper, we propose a new varying coefficient partially nonlinear model where both the response and predictors are not directly observed, but are observed by unknown distorting functions of a commonly observable covariate. Because of the complexity of the model, existing estimation methods cannot be directly employed. For this, we propose using an efficient nonparametric regression to estimate the unknown distortion functions concerning the covariates and response on the distorting variable, and further, we obtain the profile nonlinear least squares estimators for the parameters and the coefficient functions using the calibrated variables. Furthermore, we establish the asymptotic properties of the resulting estimators. To illustrate our proposed methodology, we carry out some simulated and real examples.  相似文献   

12.
Motivated from problems in canonical correlation analysis, reduced rank regression and sufficient dimension reduction, we introduce a double dimension reduction model where a single index of the multivariate response is linked to the multivariate covariate through a single index of these covariates, hence the name double single index model. Because nonlinear association between two sets of multivariate variables can be arbitrarily complex and even intractable in general, we aim at seeking a principal one‐dimensional association structure where a response index is fully characterized by a single predictor index. The functional relation between the two single‐indices is left unspecified, allowing flexible exploration of any potential nonlinear association. We argue that such double single index association is meaningful and easy to interpret, and the rest of the multi‐dimensional dependence structure can be treated as nuisance in model estimation. We investigate the estimation and inference of both indices and the regression function, and derive the asymptotic properties of our procedure. We illustrate the numerical performance in finite samples and demonstrate the usefulness of the modelling and estimation procedure in a multi‐covariate multi‐response problem concerning concrete.  相似文献   

13.
The T‐optimality criterion is used in optimal design to derive designs for model selection. To set up the method, it is required that one of the models is considered to be true. We term this local T‐optimality. In this work, we propose a generalisation of T‐optimality (termed robust T‐optimality) that relaxes the requirement that one of the candidate models is set as true. We then show an application to a nonlinear mixed effects model with two candidate non‐nested models and combine robust T‐optimality with robust D‐optimality. Optimal design under local T‐optimality was found to provide adequate power when the a priori assumed true model was the true model but poor power if the a priori assumed true model was not the true model. The robust T‐optimality method provided adequate power irrespective of which model was true. The robust T‐optimality method appears to have useful properties for nonlinear models, where both the parameter values and model structure are required to be known a priori, and the most likely model that would be applied to any new experiment is not known with certainty. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

14.
Applying nonparametric variable selection criteria in nonlinear regression models generally requires a substantial computational effort if the data set is large. In this paper we present a selection technique that is computationally much less demanding and performs well in comparison with methods currently available. It is based on a polynomial approximation of the nonlinear model. Performing the selection only requires repeated least squares estimation of models that are linear in parameters. The main limitation of the method is that the number of variables among which to select cannot be very large if the sample is small and the order of an adequate polynomial at the same time is high. Large samples can be handled without problems.  相似文献   

15.
We consider the problem of optimal design of experiments for random effects models, especially population models, where a small number of correlated observations can be taken on each individual, while the observations corresponding to different individuals are assumed to be uncorrelated. We focus on c-optimal design problems and show that the classical equivalence theorem and the famous geometric characterization of Elfving (1952) from the case of uncorrelated data can be adapted to the problem of selecting optimal sets of observations for the n individual patients. The theory is demonstrated by finding optimal designs for a linear model with correlated observations and a nonlinear random effects population model, which is commonly used in pharmacokinetics.  相似文献   

16.
Measures of association between two sets of random variables have long been of interest to statisticians. The classical canonical correlation analysis (LCCA) can characterize, but also is limited to, linear association. This article introduces a nonlinear and nonparametric kernel method for association study and proposes a new independence test for two sets of variables. This nonlinear kernel canonical correlation analysis (KCCA) can also be applied to the nonlinear discriminant analysis. Implementation issues are discussed. We place the implementation of KCCA in the framework of classical LCCA via a sequence of independent systems in the kernel associated Hilbert spaces. Such a placement provides an easy way to carry out the KCCA. Numerical experiments and comparison with other nonparametric methods are presented.  相似文献   

17.
Abstract.  The expectation-maximization (EM) algorithm is a popular approach for obtaining maximum likelihood estimates in incomplete data problems because of its simplicity and stability (e.g. monotonic increase of likelihood). However, in many applications the stability of EM is attained at the expense of slow, linear convergence. We have developed a new class of iterative schemes, called squared iterative methods (SQUAREM), to accelerate EM, without compromising on simplicity and stability. SQUAREM generally achieves superlinear convergence in problems with a large fraction of missing information. Globally convergent schemes are easily obtained by viewing SQUAREM as a continuation of EM. SQUAREM is especially attractive in high-dimensional problems, and in problems where model-specific analytic insights are not available. SQUAREM can be readily implemented as an 'off-the-shelf' accelerator of any EM-type algorithm, as it only requires the EM parameter updating. We present four examples to demonstrate the effectiveness of SQUAREM. A general-purpose implementation (written in R) is available.  相似文献   

18.
Projection techniques for nonlinear principal component analysis   总被引:4,自引:0,他引:4  
Principal Components Analysis (PCA) is traditionally a linear technique for projecting multidimensional data onto lower dimensional subspaces with minimal loss of variance. However, there are several applications where the data lie in a lower dimensional subspace that is not linear; in these cases linear PCA is not the optimal method to recover this subspace and thus account for the largest proportion of variance in the data.Nonlinear PCA addresses the nonlinearity problem by relaxing the linear restrictions on standard PCA. We investigate both linear and nonlinear approaches to PCA both exclusively and in combination. In particular we introduce a combination of projection pursuit and nonlinear regression for nonlinear PCA. We compare the success of PCA techniques in variance recovery by applying linear, nonlinear and hybrid methods to some simulated and real data sets.We show that the best linear projection that captures the structure in the data (in the sense that the original data can be reconstructed from the projection) is not necessarily a (linear) principal component. We also show that the ability of certain nonlinear projections to capture data structure is affected by the choice of constraint in the eigendecomposition of a nonlinear transform of the data. Similar success in recovering data structure was observed for both linear and nonlinear projections.  相似文献   

19.
This paper introduces practical methods of parameter and standard error estimation for adaptive robust regression where errors are assumed to be from a normal/independent family of distributions. In particular, generalized EM algorithms (GEM) are considered for the two cases of t and slash families of distributions. For the t family, a one step method is proposed to estimate the degree of freedom parameter. Use of empirical information is suggested for standard error estimation. It is shown that this choice leads to standard errors that can be obtained as a by-product of the GEM algorithm. The proposed methods, as discussed, can be implemented in most available nonlinear regression programs. Details of implementation in SAS NLIN are given using two specific examples.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号