首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
In this paper, we introduce a new risk measure, the so‐called conditional tail moment. It is defined as the moment of order a ≥ 0 of the loss distribution above the upper α‐quantile where α ∈ (0,1). Estimating the conditional tail moment permits us to estimate all risk measures based on conditional moments such as conditional tail expectation, conditional value at risk or conditional tail variance. Here, we focus on the estimation of these risk measures in case of extreme losses (where α ↓0 is no longer fixed). It is moreover assumed that the loss distribution is heavy tailed and depends on a covariate. The estimation method thus combines non‐parametric kernel methods with extreme‐value statistics. The asymptotic distribution of the estimators is established, and their finite‐sample behaviour is illustrated both on simulated data and on a real data set of daily rainfalls.  相似文献   

2.
The prediction error for mixed models can have a conditional or a marginal perspective depending on the research focus. We introduce a novel conditional version of the optimism theorem for mixed models linking the conditional prediction error to covariance penalties for mixed models. Different possibilities for estimating these conditional covariance penalties are introduced. These are bootstrap methods, cross-validation, and a direct approach called Steinian. The behavior of the different estimation techniques is assessed in a simulation study for the binomial-, the t-, and the gamma distribution and for different kinds of prediction error. Furthermore, the impact of the estimation techniques on the prediction error is discussed based on an application to undernutrition in Zambia.  相似文献   

3.
A main goal of regression is to derive statistical conclusions on the conditional distribution of the output variable Y given the input values x. Two of the most important characteristics of a single distribution are location and scale. Regularised kernel methods (RKMs) – also called support vector machines in a wide sense – are well established to estimate location functions like the conditional median or the conditional mean. We investigate the estimation of scale functions by RKMs when the conditional median is unknown, too. Estimation of scale functions is important, e.g. to estimate the volatility in finance. We consider the median absolute deviation (MAD) and the interquantile range as measures of scale. Our main result shows the consistency of MAD-type RKMs.  相似文献   

4.
Linear mixed models are widely used when multiple correlated measurements are made on each unit of interest. In many applications, the units may form several distinct clusters, and such heterogeneity can be more appropriately modelled by a finite mixture linear mixed model. The classical estimation approach, in which both the random effects and the error parts are assumed to follow normal distribution, is sensitive to outliers, and failure to accommodate outliers may greatly jeopardize the model estimation and inference. We propose a new mixture linear mixed model using multivariate t distribution. For each mixture component, we assume the response and the random effects jointly follow a multivariate t distribution, to conveniently robustify the estimation procedure. An efficient expectation conditional maximization algorithm is developed for conducting maximum likelihood estimation. The degrees of freedom parameters of the t distributions are chosen data adaptively, for achieving flexible trade-off between estimation robustness and efficiency. Simulation studies and an application on analysing lung growth longitudinal data showcase the efficacy of the proposed approach.  相似文献   

5.
A novel approach to quantile estimation in multivariate linear regression models with change-points is proposed: the change-point detection and the model estimation are both performed automatically, by adopting either the quantile-fused penalty or the adaptive version of the quantile-fused penalty. These two methods combine the idea of the check function used for the quantile estimation and the L1 penalization principle known from the signal processing and, unlike some standard approaches, the presented methods go beyond typical assumptions usually required for the model errors, such as sub-Gaussian or normal distribution. They can effectively handle heavy-tailed random error distributions, and, in general, they offer a more complex view on the data as one can obtain any conditional quantile of the target distribution, not just the conditional mean. The consistency of detection is proved and proper convergence rates for the parameter estimates are derived. The empirical performance is investigated via an extensive comparative simulation study and practical utilization is demonstrated using a real data example.  相似文献   

6.
This article proposes a joint test for conditional heteroscedasticity in dynamic panel data models. The test is constructed by checking the joint significance of estimates of second to pth-order serial correlation in the squares sequence of the first differenced errors. To avoid any distribution assumptions of the errors and the effects, we adopt the GMM estimation for the parameter coefficient and higher order moment estimation for the errors. Based on the estimations, a joint test is constructed for conditional heteroscedasticity in the error. The resulted test is asymptotically chi-squared under the null hypothesis and easy to implement. The small sample properties of the test are investigated by means of Monte Carlo experiments. The evidence shows that the test performs well in dynamic panel data with large number n of individuals and short periods T of time. A real data is analyzed for illustration.  相似文献   

7.
ABSTRACT

We consider the estimation of the conditional cumulative distribution function of a scalar response variable Y given a Hilbertian random variable X when the observations are linked via a single-index structure. We establish the pointwise and the uniform almost complete convergence (with the rate) of the kernel estimate of this model. As an application, we show how our result can be applied in the prediction problem via the conditional median estimate. Also, the choice of the functional index via the cross-validation procedure is also discussed but not attacked.  相似文献   

8.
Abstract

This paper investigates the first-order random coefficient integer valued autoregressive process with the occasional level shift random noise based on dual empirical likelihood. The limiting distribution of log empirical likelihood ratio statistic is constructed. Asymptotic convergence and confidence region results of empirical likelihood ratio are given. Hypothesis testing is considering, and maximum empirical likelihood estimation for parameter is acquired. Simulations are given to show that the maximum empirical likelihood estimation is more efficient than the conditional least squares estimation.  相似文献   

9.
It has been found that, for a variety of probability distributions, there is a surprising linear relation between mode, mean, and median. In this article, the relation between mode, mean, and median regression functions is assumed to follow a simple parametric model. We propose a semiparametric conditional mode (mode regression) estimation for an unknown (unimodal) conditional distribution function in the context of regression model, so that any m-step-ahead mean and median forecasts can then be substituted into the resultant model to deliver m-step-ahead mode prediction. In the semiparametric model, Least Squared Estimator (LSEs) for the model parameters and the simultaneous estimation of the unknown mean and median regression functions by the local linear kernel method are combined to infer about the parametric and nonparametric components of the proposed model. The asymptotic normality of these estimators is derived, and the asymptotic distribution of the parameter estimates is also given and is shown to follow usual parametric rates in spite of the presence of the nonparametric component in the model. These results are applied to obtain a data-based test for the dependence of mode regression over mean and median regression under a regression model.  相似文献   

10.
Conventional multiclass conditional probability estimation methods, such as Fisher's discriminate analysis and logistic regression, often require restrictive distributional model assumption. In this paper, a model-free estimation method is proposed to estimate multiclass conditional probability through a series of conditional quantile regression functions. Specifically, the conditional class probability is formulated as a difference of corresponding cumulative distribution functions, where the cumulative distribution functions can be converted from the estimated conditional quantile regression functions. The proposed estimation method is also efficient as its computation cost does not increase exponentially with the number of classes. The theoretical and numerical studies demonstrate that the proposed estimation method is highly competitive against the existing competitors, especially when the number of classes is relatively large.  相似文献   

11.
Coefficient estimation in linear regression models with missing data is routinely carried out in the mean regression framework. However, the mean regression theory breaks down if the error variance is infinite. In addition, correct specification of the likelihood function for existing imputation approach is often challenging in practice, especially for skewed data. In this paper, we develop a novel composite quantile regression and a weighted quantile average estimation procedure for parameter estimation in linear regression models when some responses are missing at random. Instead of imputing the missing response by randomly drawing from its conditional distribution, we propose to impute both missing and observed responses by their estimated conditional quantiles given the observed data and to use the parametrically estimated propensity scores to weigh check functions that define a regression parameter. Both estimation procedures are resistant to heavy‐tailed errors or outliers in the response and can achieve nice robustness and efficiency. Moreover, we propose adaptive penalization methods to simultaneously select significant variables and estimate unknown parameters. Asymptotic properties of the proposed estimators are carefully investigated. An efficient algorithm is developed for fast implementation of the proposed methodologies. We also discuss a model selection criterion, which is based on an ICQ ‐type statistic, to select the penalty parameters. The performance of the proposed methods is illustrated via simulated and real data sets.  相似文献   

12.
In a relapse clinical trial patients who have recovered from some recurrent disease (e.g.,ulcer or cancer) are examined at a number of predetermined times. A relapse can be detected either at one of these planned inspections or at a spontaneous visit initiated by the patient because of symptoms. In the first case the observations of the time to relapse, X, is interval-censored by two predetermined time-points. In the second case the upper endpoint of the interval is an observation of the time to symptoms,Y . To model the progression of the disease we use a partially observable Markov process. This approach results in a bivariate phase-type distribution for the joint distribution of (X,Y). It is a flexible model which contains several natural distributions for X, and allows the conditional distributions of the marginals to smoothly depend on each other. To estimate the distributions involved we develop an EM-algorithm. The estimation procedure is evaluated and compared with a non-parametric method in a couple of examples based on simulated data.  相似文献   

13.
In this paper, we propose a new generalized alpha-skew-T (GAST) distribution for generalized autoregressive conditional heteroskedasticity (GARCH) models in modelling daily Value-at-Risk (VaR). Some mathematical properties of the proposed distribution are derived including density function, moments and stochastic representation. The maximum likelihood estimation method is discussed to estimate parameters via a simulation study. Then, the real data application on S&P-500 index is performed to investigate the performance of GARCH models specified under GAST innovation distribution with respect to normal, Student's-t and Skew-T models in terms of the VaR accuracy. Backtesting methodology is used to compare the out-of-sample performance of the VaR models. The results show that GARCH models with GAST innovation distribution outperforms among others and generates the most conservative VaR forecasts for all confidence levels and for both long and short positions.  相似文献   

14.
In this work, we develop a method of adaptive non‐parametric estimation, based on ‘warped’ kernels. The aim is to estimate a real‐valued function s from a sample of random couples (X,Y). We deal with transformed data (Φ(X),Y), with Φ a one‐to‐one function, to build a collection of kernel estimators. The data‐driven bandwidth selection is performed with a method inspired by Goldenshluger and Lepski (Ann. Statist., 39, 2011, 1608). The method permits to handle various problems such as additive and multiplicative regression, conditional density estimation, hazard rate estimation based on randomly right‐censored data, and cumulative distribution function estimation from current‐status data. The interest is threefold. First, the squared‐bias/variance trade‐off is automatically realized. Next, non‐asymptotic risk bounds are derived. Lastly, the estimator is easily computed, thanks to its simple expression: a short simulation study is presented.  相似文献   

15.
The estimation of extreme conditional quantiles is an important issue in different scientific disciplines. Up to now, the extreme value literature focused mainly on estimation procedures based on independent and identically distributed samples. Our contribution is a two-step procedure for estimating extreme conditional quantiles. In a first step nonextreme conditional quantiles are estimated nonparametrically using a local version of [Koenker, R. and Bassett, G. (1978). Regression quantiles. Econometrica, 46, 33–50.] regression quantile methodology. Next, these nonparametric quantile estimates are used as analogues of univariate order statistics in procedures for extreme quantile estimation. The performance of the method is evaluated for both heavy tailed distributions and distributions with a finite right endpoint using a small sample simulation study. A bootstrap procedure is developed to guide in the selection of an optimal local bandwidth. Finally the procedure is illustrated in two case studies.  相似文献   

16.
This article makes two contributions. First, we outline a simple simulation-based framework for constructing conditional distributions for multifactor and multidimensional diffusion processes, for the case where the functional form of the conditional density is unknown. The distributions can be used, for example, to form predictive confidence intervals for time period t + τ, given information up to period t. Second, we use the simulation-based approach to construct a test for the correct specification of a diffusion process. The suggested test is in the spirit of the conditional Kolmogorov test of Andrews. However, in the present context the null conditional distribution is unknown and is replaced by its simulated counterpart. The limiting distribution of the test statistic is not nuisance parameter-free. In light of this, asymptotically valid critical values are obtained via appropriate use of the block bootstrap. The suggested test has power against a larger class of alternatives than tests that are constructed using marginal distributions/densities. The findings of a small Monte Carlo experiment underscore the good finite sample properties of the proposed test, and an empirical illustration underscores the ease with which the proposed simulation and testing methodology can be applied.  相似文献   

17.
Product moments of bivariate chi-square distribution have been derived in closed forms. Finite expressions have been derived for product moments of integer orders. Marginal and conditional distributions, conditional moments, coefficient of skewness and kurtosis of conditional distribution have also been discussed. Shannon entropy of the distribution is also derived. We also discuss the Bayesian estimation of a parameter of the distribution. Results match with the independent case when the variables are uncorrelated.  相似文献   

18.
In this paper, we develop a new forecasting algorithm for value-at-risk (VaR) based on ARMA–GARCH (autoregressive moving average–generalized autoregressive conditional heteroskedastic) models whose innovations follow a Gaussian mixture distribution. For the parameter estimation, we employ the conditional least squares and quasi-maximum-likelihood estimator (QMLE) for ARMA and GARCH parameters, respectively. In particular, Gaussian mixture parameters are estimated based on the residuals obtained from the QMLE of GARCH parameters. Our algorithm provides a handy methodology, spending much less time in calculation than the existing resampling and bias-correction method developed in Hartz et al. [Accurate value-at-risk forecasting based on the normal-GARCH model, Comput. Stat. Data Anal. 50 (2006), pp. 3032–3052]. Through a simulation study and a real-data analysis, it is shown that our method provides an accurate VaR prediction.  相似文献   

19.
ABSTRACT

In this article, we study the recursive kernel estimator of the conditional quantile of a scalar response variable Y given a random variable (rv) X taking values in a semi-metric space. Two estimators are considered. While the first one is given by inverting the double-kernel estimate of the conditional distribution function, the second estimator is obtained by using the robust approach. We establish the almost complete consistency of these estimates when the observations are sampled from a functional ergodic process. Finally, a simulation study is carried out to illustrate the finite sample performance of these estimators.  相似文献   

20.
Nonparametric estimation and inferences of conditional distribution functions with longitudinal data have important applications in biomedical studies, such as epidemiological studies and longitudinal clinical trials. Estimation approaches without any structural assumptions may lead to inadequate and numerically unstable estimators in practice. We propose in this paper a nonparametric approach based on time-varying parametric models for estimating the conditional distribution functions with a longitudinal sample. Our model assumes that the conditional distribution of the outcome variable at each given time point can be approximated by a parametric model after local Box–Cox transformation. Our estimation is based on a two-step smoothing method, in which we first obtain the raw estimators of the conditional distribution functions at a set of disjoint time points, and then compute the final estimators at any time by smoothing the raw estimators. Applications of our two-step estimation method have been demonstrated through a large epidemiological study of childhood growth and blood pressure. Finite sample properties of our procedures are investigated through a simulation study. Application and simulation results show that smoothing estimation from time-variant parametric models outperforms the existing kernel smoothing estimator by producing narrower pointwise bootstrap confidence band and smaller root mean squared error.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号