共查询到20条相似文献,搜索用时 31 毫秒
1.
A Bayesian estimator based on Franklin's randomized response procedure is proposed for proportion estimation in surveys dealing with a sensitive character. The method is simple to implement and avoids the usual drawbacks of Franklin's estimator, i.e., the occurrence of negative estimates when the population proportion is small. A simulation study is considered in order to assess the performance of the proposed estimator as well as the corresponding credible interval. 相似文献
2.
Joon Jin Song 《统计学通讯:模拟与计算》2017,46(5):4154-4160
Randomized response models have been used to estimate a population proportion of a sensitive attribute. A randomized device is typically employed to protect respondent's privacy in a survey. In addition, an unrelated question is asked to improve the statistical efficiency. In this article, we propose Bayesian estimation of rare sensitive attribute using randomized response technique, which includes a rare unrelated attribute. Two cases are considered, the proportion of a rare unrelated attribute is known and unknown. A simulation study is conducted to assess the performance of the models using mean absolute error and coverage probability. The results show that the performance depends on the parameters and is robust to priors. 相似文献
3.
The linear discriminant function (LDF) is known to be optimal in the sense of achieving an optimal error rate when sampling from multivariate normal populations with equal covariance matrices. Use of the LDF in nonnormal situations is known to lead to some strange results. This paper will focus on an evaluation of misclassification probabilities when the power transformation could have been used to achieve at least approximate normality and equal covariance matrices in the sampled populations for the distribution of the observed random variables. Attention is restricted to the two-population case with bivariate distributions. 相似文献
4.
Consider a class of autoregressive models with exogenous variables and power transformed and threshold GARCH (ARX-PTTGARCH) errors, which is a natural generalization of the standard and special GARCH model. We propose a Bayesian method to show that combining Gibbs sampler and Metropolis-Hastings algorithm to give a Bayesian analysis can be applied to estimate parameters of ARX-PTTGARCH models with success. 相似文献
5.
In the present article, we consider the calibration procedure for the Warner's and Mangat–Singh's (:M–S) randomized response survey estimators using auxiliary information associated with the variable of interest. In the calibration procedure, we can use auxiliary information such as age, gender, and income for the respondents of RR questions from an external source, and then the classical RR estimators can be improved with respect to the problems of noncoverage or nonresponse. From the efficiency comparison study, we show that the calibration estimators are more efficient than those of Warner's and Mangat-Singh's when the known population cell and marginal counts of auxiliary information are used for the calibration procedure. 相似文献
6.
《统计学通讯:理论与方法》2013,42(4):847-856
ABSTRACT The randomized response technique is an effective survey method designed to elicit sensitive information while ensuring the privacy of the respondents. In this article, we present some new results on the randomization response model in situations wherein one or two response variables are assumed to follow a multinomial distribution. For a single sensitive question, we use the well-known Hopkins randomization device to derive estimates, both under the assumption of truthful and untruthful responses, and present a technique for making pairwise comparisons. When there are two sensitive questions of interest, we derive a Pearson product moment correlation estimator based on the multinomial model assumption. This estimator may be used to quantify the linear relationship between two variables when multinomial response data are observed according to a randomized-response protocol. 相似文献
7.
《统计学通讯:理论与方法》2013,42(6):1213-1225
Abstract In this article, a new model is presented that is based on the Pareto distribution of the second kind, when the location parameter depends on covariates as well as unobserved heterogeneity. Bayesian analysis of the model can be performed using Markov Chain Monte Carlo techniques. The new procedures are illustrated in the context of artificial data as well as international output data. 相似文献
8.
This article presents the calibration procedure of the two-phase randomized response (RR) technique for surveying the sensitive characteristic. When the sampling scheme is two-phase or double sampling, auxiliary information known from the entire population can be used, but the auxiliary information should be information available from both the first and second phases of the sample. If there is auxiliary information available from both the first and second phases, then we can improve the ordinary two-phase RR estimator by incorporating this information in the estimation procedure. In this article, we used the new two-step Newton's method for computing unknown constants in the calibration procedure and compared the efficiency of the proposed estimator through some numerical study. 相似文献
9.
Liliana Garrido 《统计学通讯:理论与方法》2014,43(2):249-265
In this article, we propose Bayesian methodology to obtain parameter estimates of the mixture of distributions belonging to the normal and biparametric Weibull families, modeling the mean and the variance parameters. Simulated studies and applications show the performance of the proposed models. 相似文献
10.
Abstract. When applicable, an assumed monotonicity property of the regression function w.r.t. covariates has a strong stabilizing effect on the estimates. Because of this, other parametric or structural assumptions may not be needed at all. Although monotonic regression in one dimension is well studied, the question remains whether one can find computationally feasible generalizations to multiple dimensions. Here, we propose a non‐parametric monotonic regression model for one or more covariates and a Bayesian estimation procedure. The monotonic construction is based on marked point processes, where the random point locations and the associated marks (function levels) together form piecewise constant realizations of the regression surfaces. The actual inference is based on model‐averaged results over the realizations. The monotonicity of the construction is enforced by partial ordering constraints, which allows it to asymptotically, with increasing density of support points, approximate the family of all monotonic bounded continuous functions. 相似文献
11.
Regularization methods for simultaneous variable selection and coefficient estimation have been shown to be effective in quantile regression in improving the prediction accuracy. In this article, we propose the Bayesian bridge for variable selection and coefficient estimation in quantile regression. A simple and efficient Gibbs sampling algorithm was developed for posterior inference using a scale mixture of uniform representation of the Bayesian bridge prior. This is the first work to discuss regularized quantile regression with the bridge penalty. Both simulated and real data examples show that the proposed method often outperforms quantile regression without regularization, lasso quantile regression, and Bayesian lasso quantile regression. 相似文献
12.
13.
Since the pioneering work by Koenker and Bassett [27], quantile regression models and its applications have become increasingly popular and important for research in many areas. In this paper, a random effects ordinal quantile regression model is proposed for analysis of longitudinal data with ordinal outcome of interest. An efficient Gibbs sampling algorithm was derived for fitting the model to the data based on a location-scale mixture representation of the skewed double-exponential distribution. The proposed approach is illustrated using simulated data and a real data example. This is the first work to discuss quantile regression for analysis of longitudinal data with ordinal outcome. 相似文献
14.
Raghunath Arnab 《统计学通讯:理论与方法》2013,42(10):1839-1848
Tail estimates are developed for power law probability distributions with exponential tempering, using a conditional maximum likelihood approach based on the upper-order statistics. Tempered power law distributions are intermediate between heavy power-law tails and Laplace or exponential tails, and are sometimes called “semi-heavy” tailed distributions. The estimation method is demonstrated on simulated data from a tempered stable distribution, and for several data sets from geophysics and finance that show a power law probability tail with some tempering. 相似文献
15.
文章介绍了一种改进的敏感性问题随机化回答模型,并把贝叶斯方法用于该模型的参数估计,最后得出了参数的近似解。 相似文献
16.
Ying Zhang 《统计学通讯:理论与方法》2014,43(6):1234-1247
By incorporating informative and/or historical knowledge of the unknown parameters, Bayesian experimental design under the decision-theory framework can combine all the information available to the experimenter so that a better design may be achieved. Bayesian optimal designs for generalized linear regression models, especially for the Poisson regression model, is of interest in this article. In addition, lack of an efficient computational method in dealing with the Bayesian design leads to development of a hybrid computational method that consists of the combination of a rough global optima search and a more precise local optima search. This approach can efficiently search for the optimal design for multi-variable generalized linear models. Furthermore, the equivalence theorem is used to verify whether the design is optimal or not. 相似文献
17.
Discrete data are collected in many application areas and are often characterised by highly-skewed distributions. An example of this, which is considered in this paper, is the number of visits to a specialist, often taken as a measure of demand in healthcare. A discrete Weibull regression model was recently proposed for regression problems with a discrete response and it was shown to possess desirable properties. In this paper, we propose the first Bayesian implementation of this model. We consider a general parametrization, where both parameters of the discrete Weibull distribution can be conditioned on the predictors, and show theoretically how, under a uniform non-informative prior, the posterior distribution is proper with finite moments. In addition, we consider closely the case of Laplace priors for parameter shrinkage and variable selection. Parameter estimates and their credible intervals can be readily calculated from their full posterior distribution. A simulation study and the analysis of four real datasets of medical records show promises for the wide applicability of this approach to the analysis of count data. The method is implemented in the R package BDWreg. 相似文献
18.
Approximate Bayesian Inference for Survival Models 总被引:1,自引:0,他引:1
Abstract. Bayesian analysis of time‐to‐event data, usually called survival analysis, has received increasing attention in the last years. In Cox‐type models it allows to use information from the full likelihood instead of from a partial likelihood, so that the baseline hazard function and the model parameters can be jointly estimated. In general, Bayesian methods permit a full and exact posterior inference for any parameter or predictive quantity of interest. On the other side, Bayesian inference often relies on Markov chain Monte Carlo (MCMC) techniques which, from the user point of view, may appear slow at delivering answers. In this article, we show how a new inferential tool named integrated nested Laplace approximations can be adapted and applied to many survival models making Bayesian analysis both fast and accurate without having to rely on MCMC‐based inference. 相似文献
19.
Taeyoung Park Robert T. Krafty Alvaro I. Sánchez 《Journal of applied statistics》2012,39(10):2285-2298
A Poisson regression model with an offset assumes a constant baseline rate after accounting for measured covariates, which may lead to biased estimates of coefficients in an inhomogeneous Poisson process. To correctly estimate the effect of time-dependent covariates, we propose a Poisson change-point regression model with an offset that allows a time-varying baseline rate. When the non-constant pattern of a log baseline rate is modeled with a non-parametric step function, the resulting semi-parametric model involves a model component of varying dimensions and thus requires a sophisticated varying-dimensional inference to obtain the correct estimates of model parameters of a fixed dimension. To fit the proposed varying-dimensional model, we devise a state-of-the-art Markov chain Monte Carlo-type algorithm based on partial collapse. The proposed model and methods are used to investigate the association between the daily homicide rates in Cali, Colombia, and the policies that restrict the hours during which the legal sale of alcoholic beverages is permitted. While simultaneously identifying the latent changes in the baseline homicide rate which correspond to the incidence of sociopolitical events, we explore the effect of policies governing the sale of alcohol on homicide rates and seek a policy that balances the economic and cultural dependencies on alcohol sales to the health of the public. 相似文献
20.
David P. M. Scollnik 《统计学通讯:理论与方法》2013,42(11):2901-2918
Shookri and Consul (1989) and Scollnik (1995) have previously considered the Bayesian analysis of an overdispersed generalized Poisson model. Scollnik (1995) also considered the Bayesian analysis of an ordinary Poisson and over-dispersed generalized Poisson mixture model. In this paper, we discuss the Bayesian analysis of these models when they are utilised in a regression context. Markov chain Monte Carlo methods are utilised, and an illustrative analysis is provided. 相似文献