首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 10 毫秒
1.
A new method has been proposed to introduce an extra parameter to a family of distributions for more flexibility. A special case has been considered in detail, namely one-parameter exponential distribution. Various properties of the proposed distribution, including explicit expressions for the moments, quantiles, mode, moment-generating function, mean residual lifetime, stochastic orders, order statistics, and expression of the entropies, are derived. The maximum likelihood estimators of unknown parameters cannot be obtained in explicit forms, and they have to be obtained by solving non linear equations only. Further, we consider an extension of the two-parameter exponential distribution also, mainly for data analysis purposes. Two datasets have been analyzed to show how the proposed models work in practice.  相似文献   

2.
In this article, we introduce a new extension of the generalized linear failure rate (GLFR) distributions. It includes some well-known lifetime distributions such as extension of generalized exponential and GLFR distributions as special sub-models. In addition, it can have a constant, decreasing, increasing, upside-down bathtub (unimodal), and bathtub-shaped hazard rate function (hrf) depending on its parameters. We provide some of its statistical properties such as moments, quantiles, skewness, kurtosis, hrf, and reversible hrf. The maximum likelihood estimation of the parameters is also discussed. At the end, a real dataset is given to illustrate the usefulness of this new distribution in analyzing lifetime data.  相似文献   

3.
The inverted generalized exponential distribution is defined as an alternative model for lifetime data. The existence of moments of this distribution is shown to hold under some restrictions. However, all the moments exist for the truncated inverted generalized exponential distribution and closed-form expressions for them are derived in this article. The distributional properties of this truncated distribution are studied. Maximum likelihood estimation method is discussed for the estimation of the parameters of the distribution both theoretically and empirically. In order to see the modeling performance of the distribution, two real datasets are analyzed.  相似文献   

4.
In this article, we investigate the potential usefulness of the three-parameter transmuted generalized exponential distribution for analyzing lifetime data. We compare it with various generalizations of the two-parameter exponential distribution using maximum likelihood estimation. Some mathematical properties of the new extended model including expressions for the quantile and moments are investigated. We propose a location-scale regression model, based on the log-transmuted generalized exponential distribution. Two applications with real data are given to illustrate the proposed family of lifetime distributions.  相似文献   

5.
Abstract

In this article, we proposed a new three parameter lifetime distribution motivated mainly by lifetime issues, which generalizes the Exponential Poisson distribution proposed by Cancho et al. (2011) Cancho, V.G., Louzada-Neto, F., Barriga, G.D. (2011). The poisson-exponential lifetime distribution. Computat. Statist. Data Anal. 55:677686.[Crossref], [Web of Science ®] [Google Scholar]. We derive various standard mathematical properties of the proposed model including a formal proof of its probability density function and hazard rate function. The inference via the maximum likelihood approach is discussed. The performance of the maximum likelihood estimators, the likelihood ratio test and its power are studied by simulation. Finally, the proposed model is fitted to two real data sets and it is compared with several models.  相似文献   

6.
In this article, a transmuted linear exponential distribution is developed that generalizes the linear exponential distribution with an additional parameter using the quadratic rank transmutation map which was studied by Shaw et al. Some statistical properties of the proposed distribution such as moments, quantiles, and the failure rate function are investigated. The maximum likelihood estimators of unknown parameters are also discussed and a real data analysis is carried out to illustrate the superiority of the proposed distribution.  相似文献   

7.
In this article, we shall attempt to introduce a new class of lifetime distributions, which enfolds several known distributions such as the generalized linear failure rate distribution and covers both positive as well as negative skewed data. This new four-parameter distribution allows for flexible hazard rate behavior. Indeed, the hazard rate function here can be increasing, decreasing, bathtub-shaped, or upside-down bathtub-shaped. We shall first study some basic distributional properties of the new model such as the cumulative distribution function, the density of the order statistics, their moments, and Rényi entropy. Estimation of the stress-strength parameter as an important reliability property is also studied. The maximum likelihood estimation procedure for complete and censored data and Bayesian method are used for estimating the parameters involved. Finally, application of the new model to three real datasets is illustrated to show the flexibility and potential of the new model compared to rival models.  相似文献   

8.
We propose a new three-parameter ageing distribution called the Weibull-Poisson (WP) distribution, which generalizes the exponential-Poisson (EP) distribution introduced by Kus (2007). This new distribution has a more general form of failure rate (hazard rate) function. With appropriate choice of parameter values, it is able to model three ageing classes of life distributions including decreasing failure rate (DFR), increasing failure rate (IFR), and modified upside-down-bathtub (MUBT)-shaped failure rate. It thus provides an alternative to many existing life distributions. Various properties of this distribution are discussed and the estimation of the parameters is considered by the expectation maximization (EM) algorithm. Also, the asymptotic variance-covariance matrices of these estimates are obtained. Furthermore, some expressions for the Rènyi and Shannon entropies are given. Simulation studies are performed and experimental results are illustrated based on a real data set.  相似文献   

9.
The generalized exponential is the most commonly used distribution for analyzing lifetime data. This distribution has several desirable properties and it can be used quite effectively to analyse several skewed life time data. The main aim of this paper is to introduce absolutely continuous bivariate generalized exponential distribution using the method of Block and Basu (1974). In fact, the Block and Basu exponential distribution will be extended to the generalized exponential distribution. We call the new proposed model as the Block and Basu bivariate generalized exponential distribution, then, discuss its different properties. In this case the joint probability distribution function and the joint cumulative distribution function can be expressed in compact forms. The model has four unknown parameters and the maximum likelihood estimators cannot be obtained in explicit form. To compute the maximum likelihood estimators directly, one needs to solve a four dimensional optimization problem. The EM algorithm has been proposed to compute the maximum likelihood estimations of the unknown parameters. One data analysis is provided for illustrative purposes. Finally, we propose some generalizations of the proposed model and compare their models with each other.  相似文献   

10.
A new distribution called the beta generalized exponential distribution is proposed. It includes the beta exponential and generalized exponential (GE) distributions as special cases. We provide a comprehensive mathematical treatment of this distribution. The density function can be expressed as a mixture of generalized exponential densities. This is important to obtain some mathematical properties of the new distribution in terms of the corresponding properties of the GE distribution. We derive the moment generating function (mgf) and the moments, thus generalizing some results in the literature. Expressions for the density, mgf and moments of the order statistics are also obtained. We discuss estimation of the parameters by maximum likelihood and obtain the information matrix that is easily numerically determined. We observe in one application to a real skewed data set that this model is quite flexible and can be used effectively in analyzing positive data in place of the beta exponential and GE distributions.  相似文献   

11.
We introduce a new class of flexible hazard rate distributions which have constant, increasing, decreasing, and bathtub-shaped hazard function. This class of distributions obtained by compounding the power and exponential hazard rate functions, which is called the power-exponential hazard rate distribution and contains several important lifetime distributions. We obtain some distributional properties of the new family of distributions. The estimation of parameters is obtained by using the maximum likelihood and the Bayesian methods under squared error, linear-exponential, and Stein’s loss functions. Also, approximate confidence intervals and HPD credible intervals of parameters are presented. An application to real dataset is provided to show that the new hazard rate distribution has a better fit than the other existing hazard rate distributions and some four-parameter distributions. Finally , to compare the performance of proposed estimators and confidence intervals, an extensive Monte Carlo simulation study is conducted.  相似文献   

12.
A three-parameter extension of the exponential distribution is introduced and studied in this paper. The new distribution is quite flexible and can be used effectively in modelling survival data, reliability problems, fatigue life studies and hydrological data. It can have constant, decreasing, increasing, upside-down bathtub (unimodal), bathtub-shaped and decreasing–increasing–decreasing hazard rate functions. We provide a comprehensive account of the mathematical properties of the new distribution and various structural quantities are derived. We discuss maximum likelihood estimation of the model parameters for complete sample and for censored sample. An empirical application of the new model to real data is presented for illustrative purposes. We hope that the new distribution will serve as an alternative model to other models available in the literature for modelling real data in many areas.  相似文献   

13.
In this note we provide a characterization of the exponential distribution by means of the coincidence of location and truncated densities. We provide two proofs. The first is obtained directly via simple calculus while the second hinges on the characterization of the exponential distribution by its constant hazard rate.  相似文献   

14.
ABSTRACT

The problem of estimation of R = P(Y < X) have been used in the paper. Let X has exponential distribution mixing with exponential distribution with parameters β and θ and Y independently of X has exponential distribution with parameter λ. By using a prior guess or estimate R0, different shrinkage estimators of R are derived. Then the performance of the estimators are discussed. Finally, we compare these results with Baklizei and Dayyeh (2003) approaches.  相似文献   

15.
In this article, we propose an extension of the Maxwell distribution, so-called the extended Maxwell distribution. This extension is evolved by using the Maxwell-X family of distributions and Weibull distribution. We study its fundamental properties such as hazard rate, moments, generating functions, skewness, kurtosis, stochastic ordering, conditional moments and moment generating function, hazard rate, mean and variance of the (reversed) residual life, reliability curves, entropy, etc. In estimation viewpoint, the maximum likelihood estimation of the unknown parameters of the distribution and asymptotic confidence intervals are discussed. We also obtain expected Fisher’s information matrix as well as discuss the existence and uniqueness of the maximum likelihood estimators. The EMa distribution and other competing distributions are fitted to two real datasets and it is shown that the distribution is a good competitor to the compared distributions.  相似文献   

16.
A generalized version of inverted exponential distribution (IED) is introduced in this paper. This lifetime distribution is capable of modelling various shapes of failure rates, and hence various shapes of ageing criteria. The model can be considered as another useful two-parameter generalization of the IED. Statistical and reliability properties of the generalized inverted exponential distribution are derived. Maximum likelihood estimation and least square estimation are used to evaluate the parameters and the reliability of the distribution. Properties of the estimates are also studied.  相似文献   

17.
Developing statistical methods to model hydrologic events is always interesting for both statisticians and hydrologists, because of its importance in hydraulic structures design and water resource planning. Because of this, a flexible 3-parameter generalization of the exponential distribution is introduced based on the binomial exponential 2 (BE2) distribution [2 H.S. Bakouch, M. Aghababaei Jazi, S. Nadarajah, A. Dolati, and R. Roozegar, A lifetime model with increasing failure rate, Appl. Math. Model. 38 (2014), pp. 53925406. doi: 10.1016/j.apm.2014.04.028[Crossref], [Web of Science ®] [Google Scholar]]. The proposed distribution involving the exponential, gamma and BE2 distributions as submodels; and it exhibits decreasing, increasing and bathtub-shaped hazard rates, so it turns out to be quite flexible for analyzing non-negative real life data. Some statistical properties, parameters estimation and information matrix of the distribution are investigated. The proposed distribution, Gumbel, generalized Logistic and other distributions are utilized to model and fit two hydrologic data sets. The distribution is shown to be more appropriate to the data than the compared distributions using the selection criteria: average scaled absolute error, Akaike information criterion, Bayesian information criterion and Kolmogorov–Smirnov statistics. As a result, some hydrologic parameters of the data are obtained such as return level, conditional mean, mean deviation about the return level and the rth moments of order statistics.  相似文献   

18.
Abstract

The log-normal distribution is widely used to model non-negative data in many areas of applied research. In this paper, we introduce and study a family of distributions with non-negative reals as support and termed the log-epsilon-skew normal (LESN) which includes the log-normal distributions as a special case. It is related to the epsilon-skew normal developed in Mudholkar and Hutson (2000 Mudholkar, G. S., and A. D. Hutson. 2000. The epsilon-skew-normal distribution for analyzing near-normal data. Journal of Statistical Planning and Inference 83 (2):291309. doi:10.1016/S0378-3758(99)00096-8.[Crossref], [Web of Science ®] [Google Scholar]) the way the log-normal is related to the normal distribution. We study its main properties, hazard function, moments, skewness and kurtosis coefficients, and discuss maximum likelihood estimation of model parameters. We summarize the results of a simulation study to examine the behavior of the maximum likelihood estimates, and we illustrate the maximum likelihood estimation of the LESN distribution parameters to two real world data sets.  相似文献   

19.
ABSTRACT

Transformation of the response is a popular method to meet the usual assumptions of statistical methods based on linear models such as ANOVA and t-test. In this paper, we introduce new families of transformations for proportions or percentage data. Most of the transformations for proportions require 0 < x < 1 (where x denotes the proportion), which is often not the case in real data. The proposed families of transformations allow x = 0 and x = 1. We study the properties of the proposed transformations, as well as the performance in achieving normality and homoscedasticity. We analyze three real data sets to empirically show how the new transformation performs in meeting the usual assumptions. A simulation study is also performed to study the behavior of new families of transformations.  相似文献   

20.
The generalized exponential distribution proposed by Gupta and Kundu [Gupta, R.D and Kundu, D., 1999, Generalized exponential distributions. Australian and New Zealand Journal of Statistics, 41(2), 173–188.] is an important lifetime distribution in survival analysis. In this paper, we consider the maximum likelihood estimation procedure of the parameters of the generalized exponential distribution when the data are left censored. We obtain the maximum likelihood estimators of the unknown para-meters and the Fisher information matrix. Simulation studies are carried out to observe the performance of the estimators in small sample.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号