首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Xing-Cai Zhou 《Statistics》2013,47(3):521-534
An inherent characteristic of longitudinal data is the dependence among the observations within the same subject. For exhibiting dependencies among the observations within the same subject, this paper considers a semiparametric partially linear regression model for longitudinal data based on martingale difference error's structure. We establish a strong consistency for the least squares estimator of a parametric component and the estimator of a non-parametric function under some mild conditions. A simulation study shows the performance of the proposed estimator in finite samples.  相似文献   

2.
Hierarchical binary outcome data with three levels, such as disease remission for patients nested within physicians, nested within clinics are frequently encountered in practice. One important aspect in such data is the correlation that occurs at each level of the data. In parametric modeling, accounting for these correlations increases the complexity. These models may also yield results that lead to the same conclusions as simpler models. We developed a measure of intraclass correlation at each stage of a three-level nested structure and identified guidelines for determining when the dependencies in hierarchical models need to be taken into account. These guidelines are supported by simulations of hierarchical data sets, as well as the analysis of AIDS knowledge in Bangladesh from the 2011 Demographic Health Survey. We also provide a simple rule of thumb to assist researchers faced with the challenge of choosing an appropriately complex model when analyzing hierarchical binary data.  相似文献   

3.
Gastric emptying studies are frequently used in medical research, both human and animal, when evaluating the effectiveness and determining the unintended side-effects of new and existing medications, diets, and procedures or interventions. It is essential that gastric emptying data be appropriately summarized before making comparisons between study groups of interest and to allow study the comparisons. Since gastric emptying data have a nonlinear emptying curve and are longitudinal data, nonlinear mixed effect (NLME) models can accommodate both the variation among measurements within individuals and the individual-to-individual variation. However, the NLME model requires strong assumptions that are often not satisfied in real applications that involve a relatively small number of subjects, have heterogeneous measurement errors, or have large variation among subjects. Therefore, we propose three semiparametric Bayesian NLMEs constructed with Dirichlet process priors, which automatically cluster sub-populations and estimate heterogeneous measurement errors. To compare three semiparametric models with the parametric model we propose a penalized posterior Bayes factor. We compare the performance of our semiparametric hierarchical Bayesian approaches with that of the parametric Bayesian hierarchical approach. Simulation results suggest that our semiparametric approaches are more robust and flexible. Our gastric emptying studies from equine medicine are used to demonstrate the advantage of our approaches.  相似文献   

4.
In the analysis of semi‐competing risks data interest lies in estimation and inference with respect to a so‐called non‐terminal event, the observation of which is subject to a terminal event. Multi‐state models are commonly used to analyse such data, with covariate effects on the transition/intensity functions typically specified via the Cox model and dependence between the non‐terminal and terminal events specified, in part, by a unit‐specific shared frailty term. To ensure identifiability, the frailties are typically assumed to arise from a parametric distribution, specifically a Gamma distribution with mean 1.0 and variance, say, σ2. When the frailty distribution is misspecified, however, the resulting estimator is not guaranteed to be consistent, with the extent of asymptotic bias depending on the discrepancy between the assumed and true frailty distributions. In this paper, we propose a novel class of transformation models for semi‐competing risks analysis that permit the non‐parametric specification of the frailty distribution. To ensure identifiability, the class restricts to parametric specifications of the transformation and the error distribution; the latter are flexible, however, and cover a broad range of possible specifications. We also derive the semi‐parametric efficient score under the complete data setting and propose a non‐parametric score imputation method to handle right censoring; consistency and asymptotic normality of the resulting estimators is derived and small‐sample operating characteristics evaluated via simulation. Although the proposed semi‐parametric transformation model and non‐parametric score imputation method are motivated by the analysis of semi‐competing risks data, they are broadly applicable to any analysis of multivariate time‐to‐event outcomes in which a unit‐specific shared frailty is used to account for correlation. Finally, the proposed model and estimation procedures are applied to a study of hospital readmission among patients diagnosed with pancreatic cancer.  相似文献   

5.
Recurrent event data often arise in longitudinal studies. In many applications, subjects may experience two different types of events alternatively over time or a pair of subjects may experience recurrent events of the same type. Medical advances have made it possible for some patients to be cured such that the disease of interest does not recur. In this article, we consider non parametric analysis of bivariate recurrent event data with cure fraction. Using the inverse-probability weighted (IPW) approach, we propose non parametric estimators for the proportion of cured patients and for the joint distribution functions of bivariate recurrence times of the uncured ones. The asymptotic properties of the proposed estimators are established. Simulation study indicates that the proposed estimators perform well in finite samples.  相似文献   

6.
Motivated by the need to analyze the National Longitudinal Surveys data, we propose a new semiparametric longitudinal mean‐covariance model in which the effects on dependent variable of some explanatory variables are linear and others are non‐linear, while the within‐subject correlations are modelled by a non‐stationary autoregressive error structure. We develop an estimation machinery based on least squares technique by approximating non‐parametric functions via B‐spline expansions and establish the asymptotic normality of parametric estimators as well as the rate of convergence for the non‐parametric estimators. We further advocate a new model selection strategy in the varying‐coefficient model framework, for distinguishing whether a component is significant and subsequently whether it is linear or non‐linear. Besides, the proposed method can also be employed for identifying the true order of lagged terms consistently. Monte Carlo studies are conducted to examine the finite sample performance of our approach, and an application of real data is also illustrated.  相似文献   

7.
Abstract

The generalized linear mixed model (GLMM) is commonly used for the analysis of hierarchical non Gaussian data. It combines an exponential family model formulation with normally distributed random effects. A drawback is the difficulty of deriving convenient marginal mean functions with straightforward parametric interpretations. Several solutions have been proposed, including the marginalized multilevel model (directly formulating the marginal mean, together with a hierarchical association structure) and the bridging approach (choosing the random-effects distribution such that marginal and hierarchical mean functions share functional forms). Another approach, useful in both a Bayesian and a maximum-likelihood setting, is to choose a random-effects distribution that is conjugate to the outcome distribution. In this paper, we contrast the bridging and conjugate approaches. For binary outcomes, using characteristic functions and cumulant generating functions, it is shown that the bridge distribution is unique. Self-bridging is introduced as the situation in which the outcome and random-effects distributions are the same. It is shown that only the Gaussian and degenerate distributions have well-defined cumulant generating functions for which self-bridging holds.  相似文献   

8.
Abstract

In this article, we consider a panel data partially linear regression model with fixed effect and non parametric time trend function. The data can be dependent cross individuals through linear regressor and error components. Unlike the methods using non parametric smoothing technique, a difference-based method is proposed to estimate linear regression coefficients of the model to avoid bandwidth selection. Here the difference technique is employed to eliminate the non parametric function effect, not the fixed effects, on linear regressor coefficient estimation totally. Therefore, a more efficient estimator for parametric part is anticipated, which is shown to be true by the simulation results. For the non parametric component, the polynomial spline technique is implemented. The asymptotic properties of estimators for parametric and non parametric parts are presented. We also show how to select informative ones from a number of covariates in the linear part by using smoothly clipped absolute deviation-penalized estimators on a difference-based least-squares objective function, and the resulting estimators perform asymptotically as well as the oracle procedure in terms of selecting the correct model.  相似文献   

9.
Missing covariate data are common in biomedical studies. In this article, by using the non parametric kernel regression technique, a new imputation approach is developed for the Cox-proportional hazard regression model with missing covariates. This method achieves the same efficiency as the fully augmented weighted estimators (Qi et al. 2005. Journal of the American Statistical Association, 100:1250) and has a simpler form. The asymptotic properties of the proposed estimator are derived and analyzed. The comparisons between the proposed imputation method and several other existing methods are conducted via a number of simulation studies and a mouse leukemia data.  相似文献   

10.
Abstract. The partially linear in‐slide model (PLIM) is a useful tool to make econometric analyses and to normalize microarray data. In this article, by using series approximations and a least squares procedure, we propose a semiparametric least squares estimator (SLSE) for the parametric component and a series estimator for the non‐parametric component. Under weaker conditions than those imposed in the literature, we show that the SLSE is asymptotically normal and that the series estimator attains the optimal convergence rate of non‐parametric regression. We also investigate the estimating problem of the error variance. In addition, we propose a wild block bootstrap‐based test for the form of the non‐parametric component. Some simulation studies are conducted to illustrate the finite sample performance of the proposed procedure. An example of application on a set of economical data is also illustrated.  相似文献   

11.
In this paper, a test is derived to assess the validity of heteroscedastic nonlinear regression models by a non‐parametric cosine regression method. For order selection, the paper proposes a data‐driven method that uses the parametric null model optimal order. This method yields a test that is asymptotically normally distributed under the null hypothesis and is consistent against any fixed alternative. Simulation studies that test the lack of fit of a generalized linear model are conducted to compare the performance of the proposed test with that of an existing non‐parametric kernel test. A dataset of esterase levels is used to demonstrate the proposed method in practice.  相似文献   

12.
Researchers familiar with spatial models are aware of the challenge of choosing the level of spatial aggregation. Few studies have been published on the investigation of temporal aggregation and its impact on inferences regarding disease outcome in space–time analyses. We perform a case study for modelling individual disease outcomes using several Bayesian hierarchical spatio‐temporal models, while taking into account the possible impact of spatial and temporal aggregation. Using longitudinal breast cancer data from South East Queensland, Australia, we consider both parametric and non‐parametric formulations for temporal effects at various levels of aggregation. Two temporal smoothness priors are considered separately; each is modelled with fixed effects for the covariates and an intrinsic conditional autoregressive prior for the spatial random effects. Our case study reveals that different model formulations produce considerably different model performances. For this particular dataset, a classical parametric formulation that assumes a linear time trend produces the best fit among the five models considered. Different aggregation levels of temporal random effects were found to have little impact on model goodness‐of‐fit and estimation of fixed effects.  相似文献   

13.
This article considers a partially linear panel data model with fixed individual and time effects in a setting where both N and T are large. Based on the within transformation and profile likelihood method, we propose an approach to estimating the parametric and non parametric components of the partially linear model. The resultant estimators are shown to be consistent and asymptotically normal. Monte Carlo simulations are also conducted to illustrate the finite-sample performance of the proposed estimators.  相似文献   

14.
Generalized additive mixed models are proposed for overdispersed and correlated data, which arise frequently in studies involving clustered, hierarchical and spatial designs. This class of models allows flexible functional dependence of an outcome variable on covariates by using nonparametric regression, while accounting for correlation between observations by using random effects. We estimate nonparametric functions by using smoothing splines and jointly estimate smoothing parameters and variance components by using marginal quasi-likelihood. Because numerical integration is often required by maximizing the objective functions, double penalized quasi-likelihood is proposed to make approximate inference. Frequentist and Bayesian inferences are compared. A key feature of the method proposed is that it allows us to make systematic inference on all model components within a unified parametric mixed model framework and can be easily implemented by fitting a working generalized linear mixed model by using existing statistical software. A bias correction procedure is also proposed to improve the performance of double penalized quasi-likelihood for sparse data. We illustrate the method with an application to infectious disease data and we evaluate its performance through simulation.  相似文献   

15.
For a single-index autoregressive conditional heteroscedastic (ARCH-M) model, estimators of the parametric and non parametric components are proposed by the profile likelihood method. The research results had shown that all the estimators have consistency and the parametric estimators have asymptotic normality. We extend this line of research by deriving the asymptotic normality of the non parametric estimator. Based on the asymptotic properties, we propose Wald statistic and generalized likelihood ratio statistic to investigate the testing problems for ARCH effect and goodness of fit, respectively. A simulation study is conducted to evaluate the finite-sample performance of the proposed estimation methodology and testing procedure.  相似文献   

16.
In unsupervised classification, Hidden Markov Models (HMM) are used to account for a neighborhood structure between observations. The emission distributions are often supposed to belong to some parametric family. In this paper, a semiparametric model where the emission distributions are a mixture of parametric distributions is proposed to get a higher flexibility. We show that the standard EM algorithm can be adapted to infer the model parameters. For the initialization step, starting from a large number of components, a hierarchical method to combine them into the hidden states is proposed. Three likelihood-based criteria to select the components to be combined are discussed. To estimate the number of hidden states, BIC-like criteria are derived. A simulation study is carried out both to determine the best combination between the combining criteria and the model selection criteria and to evaluate the accuracy of classification. The proposed method is also illustrated using a biological dataset from the model plant Arabidopsis thaliana. A R package HMMmix is freely available on the CRAN.  相似文献   

17.
Abstract

We propose to compare population means and variances under a semiparametric density ratio model. The proposed method is easy to implement by employing logistic regression procedures in many statistical software, and it often works very well when data are not normal. In this paper, we construct semiparametric estimators of the differences of two population means and variances, and derive their asymptotic distributions. We prove that the proposed semiparametric estimators are asymptotically more efficient than the corresponding non parametric ones. In addition, a simulation study and the analysis of two real data sets are presented. Finally, a short discussion is provided.  相似文献   

18.
The joint modeling of longitudinal and survival data has received extraordinary attention in the statistics literature recently, with models and methods becoming increasingly more complex. Most of these approaches pair a proportional hazards survival with longitudinal trajectory modeling through parametric or nonparametric specifications. In this paper we closely examine one data set previously analyzed using a two parameter parametric model for Mediterranean fruit fly (medfly) egg-laying trajectories paired with accelerated failure time and proportional hazards survival models. We consider parametric and nonparametric versions of these two models, as well as a proportional odds rate model paired with a wide variety of longitudinal trajectory assumptions reflecting the types of analyses seen in the literature. In addition to developing novel nonparametric Bayesian methods for joint models, we emphasize the importance of model selection from among joint and non joint models. The default in the literature is to omit at the outset non joint models from consideration. For the medfly data, a predictive diagnostic criterion suggests that both the choice of survival model and longitudinal assumptions can grossly affect model adequacy and prediction. Specifically for these data, the simple joint model used in by Tseng et al. (Biometrika 92:587–603, 2005) and models with much more flexibility in their longitudinal components are predictively outperformed by simpler analyses. This case study underscores the need for data analysts to compare on the basis of predictive performance different joint models and to include non joint models in the pool of candidates under consideration.  相似文献   

19.
Partially linear varying coefficient models (PLVCMs) with heteroscedasticity are considered in this article. Based on composite quantile regression, we develop a weighted composite quantile regression (WCQR) to estimate the non parametric varying coefficient functions and the parametric regression coefficients. The WCQR is augmented using a data-driven weighting scheme. Moreover, the asymptotic normality of proposed estimators for both the parametric and non parametric parts are studied explicitly. In addition, by comparing the asymptotic relative efficiency theoretically and numerically, WCQR method all outperforms the CQR method and some other estimate methods. To achieve sparsity with high-dimensional covariates, we develop a variable selection procedure to select significant parametric components for the PLVCM and prove the method possessing the oracle property. Both simulations and data analysis are conducted to illustrate the finite-sample performance of the proposed methods.  相似文献   

20.
In this paper, we consider improved estimating equations for semiparametric partial linear models (PLM) for longitudinal data, or clustered data in general. We approximate the non‐parametric function in the PLM by a regression spline, and utilize quadratic inference functions (QIF) in the estimating equations to achieve a more efficient estimation of the parametric part in the model, even when the correlation structure is misspecified. Moreover, we construct a test which is an analogue to the likelihood ratio inference function for inferring the parametric component in the model. The proposed methods perform well in simulation studies and real data analysis conducted in this paper.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号