首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 109 毫秒
1.
Abstract

In this work, we propose beta prime kernel estimator for estimation of a probability density functions defined with nonnegative support. For the proposed estimator, beta prime probability density function used as a kernel. It is free of boundary bias and nonnegative with a natural varying shape. We obtained the optimal rate of convergence for the mean squared error (MSE) and the mean integrated squared error (MISE). Also, we use adaptive Bayesian bandwidth selection method with Lindley approximation for heavy tailed distributions and compare its performance with the global least squares cross-validation bandwidth selection method. Simulation studies are performed to evaluate the average integrated squared error (ISE) of the proposed kernel estimator against some asymmetric competitors using Monte Carlo simulations. Moreover, real data sets are presented to illustrate the findings.  相似文献   

2.
Abstract

An exact, closed form, and easy to compute expression for the mean integrated squared error (MISE) of a kernel estimator of a normal mixture cumulative distribution function is derived for the class of arbitrary order Gaussian-based kernels. Comparisons are made with MISE of the empirical distribution function, the infeasible minimum MISE, and the uniform kernel. A simple plug-in method of simultaneously selecting the optimal bandwidth and kernel order is proposed based on a non asymptotic approximation of the unknown distribution by a normal mixture. A simulation study shows that the method provides a viable alternative to existing bandwidth selection procedures.  相似文献   

3.
This paper focuses on bivariate kernel density estimation that bridges the gap between univariate and multivariate applications. We propose a subsampling-extrapolation bandwidth matrix selector that improves the reliability of the conventional cross-validation method. The proposed procedure combines a U-statistic expression of the mean integrated squared error and asymptotic theory, and can be used in both cases of diagonal bandwidth matrix and unconstrained bandwidth matrix. In the subsampling stage, one takes advantage of the reduced variability of estimating the bandwidth matrix at a smaller subsample size m (m < n); in the extrapolation stage, a simple linear extrapolation is used to remove the incurred bias. Simulation studies reveal that the proposed method reduces the variability of the cross-validation method by about 50% and achieves an expected integrated squared error that is up to 30% smaller than that of the benchmark cross-validation. It shows comparable or improved performance compared to other competitors across six distributions in terms of the expected integrated squared error. We prove that the components of the selected bivariate bandwidth matrix have an asymptotic multivariate normal distribution, and also present the relative rate of convergence of the proposed bandwidth selector.  相似文献   

4.
This paper demonstrates that cross-validation (CV) and Bayesian adaptive bandwidth selection can be applied in the estimation of associated kernel discrete functions. This idea is originally proposed by Brewer [A Bayesian model for local smoothing in kernel density estimation, Stat. Comput. 10 (2000), pp. 299–309] to derive variable bandwidths in adaptive kernel density estimation. Our approach considers the adaptive binomial kernel estimator and treats the variable bandwidths as parameters with beta prior distribution. The best variable bandwidth selector is estimated by the posterior mean in the Bayesian sense under squared error loss. Monte Carlo simulations are conducted to examine the performance of the proposed Bayesian adaptive approach in comparison with the performance of the Asymptotic mean integrated squared error estimator and CV technique for selecting a global (fixed) bandwidth proposed in Kokonendji and Senga Kiessé [Discrete associated kernels method and extensions, Stat. Methodol. 8 (2011), pp. 497–516]. The Bayesian adaptive bandwidth estimator performs better than the global bandwidth, in particular for small and moderate sample sizes.  相似文献   

5.
Abstract. The problem of estimating an unknown density function has been widely studied. In this article, we present a convolution estimator for the density of the responses in a nonlinear heterogenous regression model. The rate of convergence for the mean square error of the convolution estimator is of order n ?1 under certain regularity conditions. This is faster than the rate for the kernel density method. We derive explicit expressions for the asymptotic variance and the bias of the new estimator, and further a data‐driven bandwidth selector is proposed. We conduct simulation experiments to check the finite sample properties, and the convolution estimator performs substantially better than the kernel density estimator for well‐behaved noise densities.  相似文献   

6.
Abstract

In this work, we propose and investigate a family of non parametric quantile regression estimates. The proposed estimates combine local linear fitting and double kernel approaches. More precisely, we use a Beta kernel when covariate’s support is compact and Gamma kernel for left-bounded supports. Finite sample properties together with asymptotic behavior of the proposed estimators are presented. It is also shown that these estimates enjoy the property of having finite variance and resistance to sparse design.  相似文献   

7.
Abstract

Based on the Gamma kernel density estimation procedure, this article constructs a nonparametric kernel estimate for the regression functions when the covariate are nonnegative. Asymptotic normality and uniform almost sure convergence results for the new estimator are systematically studied, and the finite performance of the proposed estimate is discussed via a simulation study and a comparison study with an existing method. Finally, the proposed estimation procedure is applied to the Geyser data set.  相似文献   

8.
ABSTRACT

In logistic regression with nonignorable missing responses, Ibrahim and Lipsitz proposed a method for estimating regression parameters. It is known that the regression estimates obtained by using this method are biased when the sample size is small. Also, another complexity arises when the iterative estimation process encounters separation in estimating regression coefficients. In this article, we propose a method to improve the estimation of regression coefficients. In our likelihood-based method, we penalize the likelihood by multiplying it by a noninformative Jeffreys prior as a penalty term. The proposed method reduces bias and is able to handle the issue of separation. Simulation results show substantial bias reduction for the proposed method as compared to the existing method. Analyses using real world data also support the simulation findings. An R package called brlrmr is developed implementing the proposed method and the Ibrahim and Lipsitz method.  相似文献   

9.
Abstract

This article investigates the asymptotic properties of a simple empirical-likelihood-based inference method for discontinuity in density. The parameter of interest is a function of two one-sided limits of the probability density function at (possibly) two cut-off points. Our approach is based on the first-order conditions from a minimum contrast problem. We investigate both first-order and second-order properties of the proposed method. We characterize the leading coverage error of our inference method and propose a coverage-error-optimal (CE-optimal, hereafter) bandwidth selector. We show that the empirical likelihood ratio statistic is Bartlett correctable. An important special case is the manipulation testing problem in a regression discontinuity design (RDD), where the parameter of interest is the density difference at a known threshold. In RDD, the continuity of the density of the assignment variable at the threshold is considered as a “no-manipulation” behavioral assumption, which is a testable implication of an identifying condition for the local average treatment effect. When specialized to the manipulation testing problem, the CE-optimal bandwidth selector has an explicit form. We propose a data-driven CE-optimal bandwidth selector for use in practice. Results from Monte Carlo simulations are presented. Usefulness of our method is illustrated by an empirical example.  相似文献   

10.
ABSTRACT

Kernel estimation is a popular approach to estimation of the pair correlation function which is a fundamental spatial point process characteristic. Least squares cross validation was suggested by Guan [A least-squares cross-validation bandwidth selection approach in pair correlation function estimations. Statist Probab Lett. 2007;77(18):1722–1729] as a data-driven approach to select the kernel bandwidth. The method can, however, be computationally demanding for large point pattern data sets. We suggest a modified least squares cross validation approach that is asymptotically equivalent to the one proposed by Guan but is computationally much faster.  相似文献   

11.
This paper considers the problem of selecting optimal bandwidths for variable (sample‐point adaptive) kernel density estimation. A data‐driven variable bandwidth selector is proposed, based on the idea of approximating the log‐bandwidth function by a cubic spline. This cubic spline is optimized with respect to a cross‐validation criterion. The proposed method can be interpreted as a selector for either integrated squared error (ISE) or mean integrated squared error (MISE) optimal bandwidths. This leads to reflection upon some of the differences between ISE and MISE as error criteria for variable kernel estimation. Results from simulation studies indicate that the proposed method outperforms a fixed kernel estimator (in terms of ISE) when the target density has a combination of sharp modes and regions of smooth undulation. Moreover, some detailed data analyses suggest that the gains in ISE may understate the improvements in visual appeal obtained using the proposed variable kernel estimator. These numerical studies also show that the proposed estimator outperforms existing variable kernel density estimators implemented using piecewise constant bandwidth functions.  相似文献   

12.
This article is concerned with one discrete nonparametric kernel and two parametric regression approaches for providing the evolution law of pavement deterioration. The first parametric approach is a survival data analysis method; and the second is a nonlinear mixed-effects model. The nonparametric approach consists of a regression estimator using the discrete associated kernels. Some asymptotic properties of the discrete nonparametric kernel estimator are shown as, in particular, its almost sure consistency. Moreover, two data-driven bandwidth selection methods are also given, with a new theoretical explicit expression of optimal bandwidth provided for this nonparametric estimator. A comparative simulation study is realized with an application of bootstrap methods to a measure of statistical accuracy.  相似文献   

13.
Abstract

This paper is focused on kernel estimation of the gradient of a multivariate regression function. Despite the importance of this topic, the progress in this area is rather slow. Our aim is to construct a gradient estimator using the idea of local linear estimator for a regression function. The quality of this estimator is expressed in terms of the Mean Integrated Square Error. We focus on a choice of bandwidth matrix. Further, we present some data-driven methods for its choice and develop a new approach. The performance of presented methods is illustrated using a simulation study and real data example.  相似文献   

14.
Recently, Kokonendji et al. have adapted the well-known Nadaraya–Watson kernel estimator for estimating the count function m in the context of nonparametric discrete regression. The authors have also investigated the bandwidth selection using the cross-validation method. In this article, we propose a Bayesian approach in the context of nonparametric count regression for estimating the bandwidth and the variance of the model error, which has not been estimated in Kokonendji et al. The model error is considered as Gaussian with mean of zero and a variance of σ2. The Bayes estimates cannot be obtained in closed form and then, we use the well-known Markov chain Monte Carlo (MCMC) technique to compute the Bayes estimates under the squared errors loss function. The performance of this proposed approach and the cross-validation method are compared through simulation and real count data.  相似文献   

15.
Abstract

A simple method based on sliced inverse regression (SIR) is proposed to explore an effective dimension reduction (EDR) vector for the single index model. We avoid the principle component analysis step of the original SIR by using two sample mean vectors in two slices of the response variable and their difference vector. The theories become simpler, the method is equivalent to the multiple linear regression with dichotomized response, and the estimator can be expressed by a closed form, although the objective function might be an unknown nonlinear. It can be applied for the case when the number of covariates is large, and it requires no matrix operation or iterative calculation.  相似文献   

16.
We propose tests for hypotheses on the parameters of the deterministic trend function of a univariate time series. The tests do not require knowledge of the form of serial correlation in the data, and they are robust to strong serial correlation. The data can contain a unit root and still have the correct size asymptotically. The tests that we analyze are standard heteroscedasticity autocorrelation robust tests based on nonparametric kernel variance estimators. We analyze these tests using the fixed-b asymptotic framework recently proposed by Kiefer and Vogelsang. This analysis allows us to analyze the power properties of the tests with regard to bandwidth and kernel choices. Our analysis shows that among popular kernels, specific kernel and bandwidth choices deliver tests with maximal power within a specific class of tests. Based on the theoretical results, we propose a data-dependent bandwidth rule that maximizes integrated power. Our recommended test is shown to have power that dominates a related test proposed by Vogelsang. We apply the recommended test to the logarithm of a net barter terms of trade series and we find that this series has a statistically significant negative slope. This finding is consistent with the well-known Prebisch–Singer hypothesis.  相似文献   

17.
A new family of kernels is suggested for use in long run variance (LRV) estimation and robust regression testing. The kernels are constructed by taking powers of the Bartlett kernel and are intended to be used with no truncation (or bandwidth) parameter. As the power parameter (ρ)(ρ) increases, the kernels become very sharp at the origin and increasingly downweight values away from the origin, thereby achieving effects similar to a bandwidth parameter. Sharp origin kernels can be used in regression testing in much the same way as conventional kernels with no truncation, as suggested in the work of Kiefer and Vogelsang [2002a, Heteroskedasticity-autocorrelation robust testing using bandwidth equal to sample size. Econometric Theory 18, 1350–1366, 2002b, Heteroskedasticity-autocorrelation robust standard errors using the Bartlett kernel without truncation, Econometrica 70, 2093–2095] Analysis and simulations indicate that sharp origin kernels lead to tests with improved size properties relative to conventional tests and better power properties than other tests using Bartlett and other conventional kernels without truncation.  相似文献   

18.
Gasser, Kneip and Köhler (1991) proposed a fast and flexible procedure for automatic bandwidth selection in kernel regression estimation. This article describes this method and additionally derives the joint asymptotic normal distribution of this bandwidth selector with the realizationwise optimal bandwidth.  相似文献   

19.
ABSTRACT

The estimation of variance function plays an extremely important role in statistical inference of the regression models. In this paper we propose a variance modelling method for constructing the variance structure via combining the exponential polynomial modelling method and the kernel smoothing technique. A simple estimation method for the parameters in heteroscedastic linear regression models is developed when the covariance matrix is unknown diagonal and the variance function is a positive function of the mean. The consistency and asymptotic normality of the resulting estimators are established under some mild assumptions. In particular, a simple version of bootstrap test is adapted to test misspecification of the variance function. Some Monte Carlo simulation studies are carried out to examine the finite sample performance of the proposed methods. Finally, the methodologies are illustrated by the ozone concentration dataset.  相似文献   

20.
ABSTRACT

The last few years, the applications of Support Vector Machine (SVM) for solving classification and regression problems have been increasing, due to its high performance and ability to transform the non-linear relationships among variables to linear form by employing the kernel idea (kernel function). In this work, we develop a semi-parametric approach to fit single-index models to deal with high-dimensional problems. To achieve this goal, we use support vector regression (SVR) for estimating the unknown nonparametric link function, while the single-index is determined by using the semi-parametric least squares method (Ichimura 1993). This development enhances the ability of SVR to solve high-dimensional problem. We design a three simulation examples with high-dimensional problems (linear and nonlinear). The simulations demonstrate the superior performance of the proposed method versus the standard SVR method. This is further illustrated by applying the real data.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号