首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 234 毫秒
1.
In this paper, different dissimilarity measures are investigated to construct maximin designs for compositional data. Specifically, the effect of different dissimilarity measures on the maximin design criterion for two case studies is presented. Design evaluation criteria are proposed to distinguish between the maximin designs generated. An optimization algorithm is also presented. Divergence is found to be the best dissimilarity measure to use in combination with the maximin design criterion for creating space-filling designs for mixture variables.  相似文献   

2.
In the optimal experimental design literature, the G-optimality is defined as minimizing the maximum prediction variance over the entire experimental design space. Although the G-optimality is a highly desirable property in many applications, there are few computer algorithms developed for constructing G-optimal designs. Some existing methods employ an exhaustive search over all candidate designs, which is time-consuming and inefficient. In this paper, a new algorithm for constructing G-optimal experimental designs is developed for both linear and generalized linear models. The new algorithm is made based on the clustering of candidate or evaluation points over the design space and it is a combination of point exchange algorithm and coordinate exchange algorithm. In addition, a robust design algorithm is proposed for generalized linear models with modification of an existing method. The proposed algorithm are compared with the methods proposed by Rodriguez et al. [Generating and assessing exact G-optimal designs. J. Qual. Technol. 2010;42(1):3–20] and Borkowski [Using a genetic algorithm to generate small exact response surface designs. J. Prob. Stat. Sci. 2003;1(1):65–88] for linear models and with the simulated annealing method and the genetic algorithm for generalized linear models through several examples in terms of the G-efficiency and computation time. The result shows that the proposed algorithm can obtain a design with higher G-efficiency in a much shorter time. Moreover, the computation time of the proposed algorithm only increases polynomially when the size of model increases.  相似文献   

3.
The uniform design is a kind of important experimental design which has great practical value in production and living. Most existing literatures on this topic focus on the construction of uniform designs on regular regions. However, because of the complexity of practical situations, the irregular design region is more common in real life. In this paper, an algorithm is proposed to the construction of nearly uniform designs on irregular regions. The basic idea is to make use of uniform designs on a larger regular region with the irregular region being a subregion. Some theoretical justifications on the proposed algorithm are provided. Both the comparisons with the existing results and a real-life example show that our proposed algorithm is effective.  相似文献   

4.
The long computational time required in constructing optimal designs for computer experiments has limited their uses in practice. In this paper, a new algorithm for constructing optimal experimental designs is developed. There are two major developments involved in this work. One is on developing an efficient global optimal search algorithm, named as enhanced stochastic evolutionary (ESE) algorithm. The other is on developing efficient methods for evaluating optimality criteria. The proposed algorithm is compared to existing techniques and found to be much more efficient in terms of the computation time, the number of exchanges needed for generating new designs, and the achieved optimality criteria. The algorithm is also very flexible to construct various classes of optimal designs to retain certain desired structural properties.  相似文献   

5.
Response-adaptive designs in clinical trials incorporate information from prior patient responses in order to assign better performing treatments to the future patients of a clinical study. An example of a response adaptive design that has received much attention in recent years is the randomized play the winner design (RPWD). Beran [1977. Minimum Hellinger distance estimates for parametric models. Ann. Statist. 5, 445–463] investigated the problem of minimum Hellinger distance procedure (MHDP) for continuous data and showed that minimum Hellinger distance estimator (MHDE) of a finite dimensional parameter is as efficient as the MLE (maximum likelihood estimator) under a true model assumption. This paper develops minimum Hellinger distance methodology for data generated using RPWD. A new algorithm using the Monte Carlo approximation to the estimating equation is proposed. Consistency and asymptotic normality of the estimators are established and the robustness and small sample performance of the estimators are illustrated using simulations. The methodology when applied to the clinical trial data conducted by Eli-Lilly and Company, brings out the treatment effect in one of the strata using the frequentist techniques compared to the Bayesian argument of Tamura et al [1994. A case study of an adaptive clinical trialin the treatment of out-patients with depressive disorder. J. Amer. Statist. Assoc. 89, 768–776].  相似文献   

6.
Two symmetrical fractional factorial designs are said to be combinatorially equivalent if one design can be obtained from another by reordering the runs, relabeling the factors and relabeling the levels of one or more factors. This article presents concepts of ordered distance frequency matrix, distance frequency vector, and reduced distance frequency vector for a design. Necessary conditions for two designs to be combinatorial equivalent based on these concepts are presented. A new algorithm based on the results obtained is proposed to check combinatorial non-equivalence of two factorial designs and several illustrating examples are provided.  相似文献   

7.
We find optimal designs for linear models using a novel algorithm that iteratively combines a semidefinite programming (SDP) approach with adaptive grid techniques. The proposed algorithm is also adapted to find locally optimal designs for nonlinear models. The search space is first discretized, and SDP is applied to find the optimal design based on the initial grid. The points in the next grid set are points that maximize the dispersion function of the SDP-generated optimal design using nonlinear programming. The procedure is repeated until a user-specified stopping rule is reached. The proposed algorithm is broadly applicable, and we demonstrate its flexibility using (i) models with one or more variables and (ii) differentiable design criteria, such as A-, D-optimality, and non-differentiable criterion like E-optimality, including the mathematically more challenging case when the minimum eigenvalue of the information matrix of the optimal design has geometric multiplicity larger than 1. Our algorithm is computationally efficient because it is based on mathematical programming tools and so optimality is assured at each stage; it also exploits the convexity of the problems whenever possible. Using several linear and nonlinear models with one or more factors, we show the proposed algorithm can efficiently find optimal designs.  相似文献   

8.

This work is motivated by the need to find experimental designs which are robust under different model assumptions. We measure robustness by calculating a measure of design efficiency with respect to a design optimality criterion and say that a design is robust if it is reasonably efficient under different model scenarios. We discuss two design criteria and an algorithm which can be used to obtain robust designs. The first criterion employs a Bayesian-type approach by putting a prior or weight on each candidate model and possibly priors on the corresponding model parameters. We define the first criterion as the expected value of the design efficiency over the priors. The second design criterion we study is the minimax design which minimizes the worst value of a design criterion over all candidate models. We establish conditions when these two criteria are equivalent when there are two candidate models. We apply our findings to the area of accelerated life testing and perform sensitivity analysis of designs with respect to priors and misspecification of planning values.  相似文献   

9.
This paper studies the optimal experimental design problem to discriminate two regression models. Recently, López-Fidalgo et al. [2007. An optimal experimental design criterion for discriminating between non-normal models. J. Roy. Statist. Soc. B 69, 231–242] extended the conventional T-optimality criterion by Atkinson and Fedorov [1975a. The designs of experiments for discriminating between two rival models. Biometrika 62, 57–70; 1975b. Optimal design: experiments for discriminating between several models. Biometrika 62, 289–303] to deal with non-normal parametric regression models, and proposed a new optimal experimental design criterion based on the Kullback–Leibler information divergence. In this paper, we extend their parametric optimality criterion to a semiparametric setup, where we only need to specify some moment conditions for the null or alternative regression model. Our criteria, called the semiparametric Kullback–Leibler optimality criteria, can be implemented by applying a convex duality result of partially finite convex programming. The proposed method is illustrated by a simple numerical example.  相似文献   

10.
In the literature, different optimality criteria have been considered for model identification. Most of the proposals assume the normal distribution for the response variable and thus they provide optimality criteria for discriminating between regression models. In this paper, a max–min approach is followed to discriminate among competing statistical models (i.e., probability distribution families). More specifically, k different statistical models (plausible for the data) are embedded in a more general model, which includes them as particular cases. The proposed optimal design maximizes the minimum KL-efficiency to discriminate between each rival model and the extended one. An equivalence theorem is proved and an algorithm is derived from it, which is useful to compute max–min KL-efficiency designs. Finally, the algorithm is run on two illustrative examples.  相似文献   

11.
An experimental design is said to be Schur optimal, if it is optimal with respect to the class of all Schur isotonic criteria, which includes Kiefer's criteria of ΦpΦp-optimality, distance optimality criteria and many others. In the paper we formulate an easily verifiable necessary and sufficient condition for Schur optimality in the set of all approximate designs of a linear regression experiment with uncorrelated errors. We also show that several common models admit a Schur optimal design, for example the trigonometric model, the first-degree model on the Euclidean ball, and the Berman's model.  相似文献   

12.
Clinical trials in the era of precision cancer medicine aim to identify and validate biomarker signatures which can guide the assignment of individually optimal treatments to patients. In this article, we propose a group sequential randomized phase II design, which updates the biomarker signature as the trial goes on, utilizes enrichment strategies for patient selection, and uses Bayesian response-adaptive randomization for treatment assignment. To evaluate the performance of the new design, in addition to the commonly considered criteria of Type I error and power, we propose four new criteria measuring the benefits and losses for individuals both inside and outside of the clinical trial. Compared with designs with equal randomization, the proposed design gives trial participants a better chance to receive their personalized optimal treatments and thus results in a higher response rate on the trial. This design increases the chance to discover a successful new drug by an adaptive enrichment strategy, i.e. identification and selective enrollment of a subset of patients who are sensitive to the experimental therapies. Simulation studies demonstrate these advantages of the proposed design. It is illustrated by an example based on an actual clinical trial in non-small-cell lung cancer.  相似文献   

13.
For many complex processes laboratory experimentation is too expensive or too time-consuming to be carried out. A practical alternative is to simulate these phenomena by a computer code. This article considers the choice of an experimental design for computer experiments. We illustrate some drawbacks to criteria that have been proposed and suggest an alternative, based on the Bayesian interpretation of the alias matrix in Draper and Guttman (Ann. Inst. Statist. Math. 44 (1992) 659). Then we compare different design criteria by studying how they rate a variety of candidate designs for computer experiments such as Latin hypercube plans, U-designs, lattice designs and rotation designs.  相似文献   

14.
A supersaturated design is essentially a fractional factorial design whose number of experimental variables is greater than or equal to its number of experimental runs. Under the effect sparsity assumption, a supersaturated design can be very cost-effective. In this paper, our prime objective is to compare the existing two-level supersaturated designs for the noisy case through the probability of correct searching—a powerful criterion proposed by Shirakura et al. [1996. Searching probabilities for nonzeroeffects in search designs for the noisy case. Ann. Statist. 24, 2560–2568]. An algorithm is proposed to construct supersaturated designs with high probability of correct searching. Examples are given for illustration.  相似文献   

15.

Kaufman and Rousseeuw (1990) proposed a clustering algorithm Partitioning Around Medoids (PAM) which maps a distance matrix into a specified number of clusters. A particularly nice property is that PAM allows clustering with respect to any specified distance metric. In addition, the medoids are robust representations of the cluster centers, which is particularly important in the common context that many elements do not belong well to any cluster. Based on our experience in clustering gene expression data, we have noticed that PAM does have problems recognizing relatively small clusters in situations where good partitions around medoids clearly exist. In this paper, we propose to partition around medoids by maximizing a criteria "Average Silhouette" defined by Kaufman and Rousseeuw (1990). We also propose a fast-to-compute approximation of "Average Silhouette". We implement these two new partitioning around medoids algorithms and illustrate their performance relative to existing partitioning methods in simulations.  相似文献   

16.
This paper presents a new Pareto-based coordinate exchange algorithm for populating or approximating the true Pareto front for multi-criteria optimal experimental design problems that arise naturally in a range of industrial applications. This heuristic combines an elitist-like operator inspired by evolutionary multi-objective optimization algorithms with a coordinate exchange operator that is commonly used to construct optimal designs. Benchmarking results from both a two-dimensional and three-dimensional example demonstrate that the proposed hybrid algorithm can generate highly reliable Pareto fronts with less computational effort than existing procedures in the statistics literature. The proposed algorithm also utilizes a multi-start operator, which makes it readily parallelizable for high performance computing infrastructures.  相似文献   

17.
An early goal in autonomous navigation research is to build a research vehicle which can travel through office areas and factory floors, A simple strategy for directing the robot's movement in a hallway is to maintain a fixed distance from the wall. The problem is complicated by the fact that there are many factors in the environment, such as opened doors, pillars or other temporary objects, that can introduce 'noise' into the distance measure. To maintain a proper path with minimum interruption, the robot should have the ability to make decisions, based on measurements, and adjust its course only when it is deemed necessary. This report describes a new algorithm which enables the robot to move along and maintain a fixed distance from a reference object. The method, based on a robust estimator of the location, combines information from earlier measurements with current observations from range sensors to effectively produce an estimate of the distance between the robot and the object. A simulation study, showing the trajectories generated using this algorithm with different parameters for different environments, is presented.  相似文献   

18.
Summary: In nonlinear statistical models, standard optimality functions for experimental designs depend on the unknown parameters of the model. An appealing and robust concept for choosing a design is the minimax criterion. However, so far, minimax optimal designs have been calculated efficiently under various restrictive conditions only. We extend an iterative relaxation scheme originally proposed by Shimizu and Aiyoshi (1980) and prove its convergence under very general assumptions which cover a variety of situations considered in experimental design. Application to different specific design criteria is discussed and issues of practical implementation are addressed. First numerical results suggest that the method may be very efficient with respect to the number of iterations required.*Supported by a grant from the Deutsche Forschungsgemeinschaft. We are grateful to a referee for his constructive suggestions.  相似文献   

19.
Although Markov chain Monte Carlo methods have been widely used in many disciplines, exact eigen analysis for such generated chains has been rare. In this paper, a special Metropolis-Hastings algorithm, Metropolized independent sampling, proposed first in Hastings (1970), is studied in full detail. The eigenvalues and eigenvectors of the corresponding Markov chain, as well as a sharp bound for the total variation distance between the nth updated distribution and the target distribution, are provided. Furthermore, the relationship between this scheme, rejection sampling, and importance sampling are studied with emphasis on their relative efficiencies. It is shown that Metropolized independent sampling is superior to rejection sampling in two respects: asymptotic efficiency and ease of computation.  相似文献   

20.
In this article, we propose a novel algorithm for sequential design of metamodels in random simulation, which combines the exploration capability of most one-shot space-filling designs with the exploitation feature of common sequential designs. The algorithm continuously maintains a balance between the exploration and the exploitation search throughout the search process in a sequential and adaptive manner. The numerical results indicate that the proposed approach is superior to one of the existing well-known sequential designs in terms of both the computational efficiency and speed in generating efficient experimental designs.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号