首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
It is well known that when the true values of the independent variable are unobservable due to measurement error, the least squares estimator for a regression model is biased and inconsistent. When repeated observations on each xi are taken, consistent estimators for the linear-plateau model can be formed. The repeated observations are required to classify each observation to the appropriate line segment. Two cases of repeated observations are treated in detail. First, when a single value of yi is observed with the repeated observations of xi the least squares estimator using the mean of the repeated xi observations is consistent and asymptotically normal. Second, when repeated observations on the pair (xi, yi ) are taken the least squares estimator is inconsistent, but two consistent estimators are proposed: one that consistently estimates the bias of the least squares estimator and adjusts accordingly; the second is the least squares estimator using the mean of the repeated observations on each pair.  相似文献   

2.
The following two predictors are compared for time series with systematically missing observations: (a) A time series model is fitted to the full series Xt , and forecasts are based on this model, (b) A time series model is fitted to the series with systematically missing observations Y τ, and forecasts are based on the resulting model. If the data generation processes are known vector autoregressive moving average (ARMA) processes, the first predictor is at least as efficient as the second one in a mean squared error sense. Conditions are given for the two predictors to be identical. If only the ARMA orders of the generation processes are known and the coefficients are estimated, or if the process orders and coefficients are estimated, the first predictor is again, in general, superior. There are, however, exceptions in which the second predictor, using seemingly less information, may be better. These results are discussed, using both asymptotic theory and small sample simulations. Some economic time series are used as illustrative examples.  相似文献   

3.
In this work, we study D s -optimal design for Kozak's tree taper model. The approximate D s -optimal designs are found invariant to tree size and hence create a ground to construct a general replication-free D s -optimal design. Even though the designs are found not to be dependent on the parameter value p of the Kozak's model, they are sensitive to the s×1 subset parameter vector values of the model. The 12 points replication-free design (with 91% efficiency) suggested in this study is believed to reduce cost and time for data collection and more importantly to precisely estimate the subset parameters of interest.  相似文献   

4.
We propose the L1 distance between the distribution of a binned data sample and a probability distribution from which it is hypothetically drawn as a statistic for testing agreement between the data and a model. We study the distribution of this distance for N-element samples drawn from k bins of equal probability and derive asymptotic formulae for the mean and dispersion of L1 in the large-N limit. We argue that the L1 distance is asymptotically normally distributed, with the mean and dispersion being accurately reproduced by asymptotic formulae even for moderately large values of N and k.  相似文献   

5.
We consider automatic data-driven density, regression and autoregression estimates, based on any random bandwidth selector h/T. We show that in a first-order asymptotic approximation they behave as well as the related estimates obtained with the “optimal” bandwidth hT as long as hT/hT → 1 in probability. The results are obtained for dependent observations; some of them are also new for independent observations.  相似文献   

6.
We developed robust estimators that minimize a weighted L1 norm for the first-order bifurcating autoregressive model. When all of the weights are fixed, our estimate is an L1 estimate that is robust against outlying points in the response space and more efficient than the least squares estimate for heavy-tailed error distributions. When the weights are random and depend on the points in the factor space, the weighted L1 estimate is robust against outlying points in the factor space. Simulated and artificial examples are presented. The behavior of the proposed estimate is modeled through a Monte Carlo study.  相似文献   

7.
Recently, a shift-independent information measure known as generalized cumulative entropy of order n (GCEn) was proposed by Kayal (2016 Kayal, S. 2016. On generalized cumulative entropies. Probability in Engineering and Informational Sciences 30:64062. [Google Scholar]). In this communication, we propose a shift-dependent version of GCEn. Various properties including the effect of transformations, bounds etc. have been discussed. Several relationships of the shift-dependent GCEn with some well-known reliability measures are studied. Few characterization results are obtained. We derive an estimator for the proposed measure via empirical distribution function approach. Large sample properties of the estimator are studied when independent observations are taken from a Weibull distribution.  相似文献   

8.
This paper considers estimation of the function g in the model Yt = g(Xt ) + ?t when E(?t|Xt) ≠ 0 with nonzero probability. We assume the existence of an instrumental variable Zt that is independent of ?t, and of an innovation ηt = XtE(Xt|Zt). We use a nonparametric regression of Xt on Zt to obtain residuals ηt, which in turn are used to obtain a consistent estimator of g. The estimator was first analyzed by Newey, Powell & Vella (1999) under the assumption that the observations are independent and identically distributed. Here we derive a sample mean‐squared‐error convergence result for independent identically distributed observations as well as a uniform‐convergence result under time‐series dependence.  相似文献   

9.
We regard the simple linear calibration problem where only the response y of the regression line y = β0 + β1 t is observed with errors. The experimental conditions t are observed without error. For the errors of the observations y we assume that there may be some gross errors providing outlying observations. This situation can be modeled by a conditionally contaminated regression model. In this model the classical calibration estimator based on the least squares estimator has an unbounded asymptotic bias. Therefore we introduce calibration estimators based on robust one-step-M-estimators which have a bounded asymptotic bias. For this class of estimators we discuss two problems: The optimal estimators and their corresponding optimal designs. We derive the locally optimal solutions and show that the maximin efficient designs for non-robust estimation and robust estimation coincide.  相似文献   

10.
Consistency and asymptotic normality of the maximum likelihood estimator of β in the loglinear model E(yi) = eα+βXi, where yi are independent Poisson observations, 1 iaan, are proved under conditions which are near necessary and sufficient. The asymptotic distribution of the deviance test for β=β0 is shown to be chi-squared with 1 degree of freedom under the same conditions, and a second order correction to the deviance is derived. The exponential model for censored survival data is also treated by the same methods.  相似文献   

11.
In this paper, the regression model with a nonnegativity constraint on the dependent variable is considered. Under weak conditions, L 1 estimates of the regression coefficients are shown to be consistent.  相似文献   

12.
Robust automatic selection techniques for the smoothing parameter of a smoothing spline are introduced. They are based on a robust predictive error criterion and can be viewed as robust versions of C p and cross-validation. They lead to smoothing splines which are stable and reliable in terms of mean squared error over a large spectrum of model distributions.  相似文献   

13.
In healthcare studies, count data sets measured with covariates often exhibit heterogeneity and contain extreme values. To analyse such count data sets, we use a finite mixture of regression model framework and investigate a robust estimation approach, called the L2E [D.W. Scott, On fitting and adapting of density estimates, Comput. Sci. Stat. 30 (1998), pp. 124–133], to estimate the parameters. The L2E is based on an integrated L2 distance between parametric conditional and true conditional mass functions. In addition to studying the theoretical properties of the L2E estimator, we compare the performance of L2E with the maximum likelihood (ML) estimator and a minimum Hellinger distance (MHD) estimator via Monte Carlo simulations for correctly specified and gross-error contaminated mixture of Poisson regression models. These show that the L2E is a viable robust alternative to the ML and MHD estimators. More importantly, we use the L2E to perform a comprehensive analysis of a Western Australia hospital inpatient obstetrical length of stay (LOS) (in days) data that contains extreme values. It is shown that the L2E provides a two-component Poisson mixture regression fit to the LOS data which is better than those based on the ML and MHD estimators. The L2E fit identifies admission type as a significant covariate that profiles the predominant subpopulation of normal-stayers as planned patients and the small subpopulation of long-stayers as emergency patients.  相似文献   

14.
In this paper, the maximum likelihood estimates of the parameters for the M/Er /1 queueing model are derived when the queue size at each departure point is observed. A numerical example is generated by simulating a finite Markov chain to illustrate the methodology for estimating the parameters with variable Erlang service time distribution. The problem of hypothesis testing and simultaneous Confidence regions of the parameter is also investigated.0  相似文献   

15.
An exact filter is an algorithm for calculating the a-posteriori distribution of the state ξ n of a process, given observations ηt, …,ηnup to time n. We describe a method to determine an appropriate algorithm for processes, where the distributions involved are members of exponential families, The resulting algorithm consists essen tially of a prediction term, combined with an affine transformation depending on the chosen model.  相似文献   

16.
Let X 1,X 2,…,X n be independent exponential random variables such that X i has hazard rate λ for i = 1,…,p and X j has hazard rate λ* for j = p + 1,…,n, where 1 ≤ p < n. Denote by D i:n (λ, λ*) = X i:n  ? X i?1:n the ith spacing of the order statistics X 1:n  ≤ X 2:n  ≤ ··· ≤ X n:n , i = 1,…,n, where X 0:n ≡ 0. It is shown that the spacings (D 1,n ,D 2,n ,…,D n:n ) are MTP2, strengthening one result of Khaledi and Kochar (2000), and that (D 1:n 2, λ*),…,D n:n 2, λ*)) ≤ lr (D 1:n 1, λ*),…,D n:n 1, λ*)) for λ1 ≤ λ* ≤ λ2, where ≤ lr denotes the multivariate likelihood ratio order. A counterexample is also given to show that this comparison result is in general not true for λ* < λ1 < λ2.  相似文献   

17.
Results of an exhaustive study of the bias of the least square estimator (LSE) of an first order autoregression coefficient α in a contaminated Gaussian model are presented. The model describes the following situation. The process is defined as Xt = α Xt-1 + Yt . Until a specified time T, Yt are iid normal N(0, 1). At the moment T we start our observations and since then the distribution of Yt, tT, is a Tukey mixture T(εσ) = (1 – ε)N(0,1) + εN(0, σ2). Bias of LSE as a function of α and ε, and σ2 is considered. A rather unexpected fact is revealed: given α and ε, the bias does not change montonically with σ (“the magnitude of the contaminant”), and similarly, given α and σ, the bias is not growing with ε (“the amount of contaminants”).  相似文献   

18.
A simple modification is suggested for the construction of transfer function models relating an output variable Yt to an input variable Xt when the model for Xt contains operators that cancel out. In addition, the evaluation of transfer function models is discussed by comparing the forecasts with the actual observations.  相似文献   

19.
Consider the exchangeable Bayesian hierarchical model where observations yi are independently distributed from sampling densities with unknown means, the means µi, are a random sample from a distribution g, and the parameters of g are assigned a known distribution h. A simple algorithm is presented for summarizing the posterior distribution based on Gibbs sampling and the Metropolis algorithm. The software program Matlab is used to implement the algorithm and provide a graphical output analysis. An binomial example is used to illustrate the flexibility of modeling possible using this algorithm. Methods of model checking and extensions to hierarchical regression modeling are discussed.  相似文献   

20.
We consider a nonparametric regression model where m noise-perturbed functions f 1,…,f m are randomly observed. For a fixed ν∈{1,…,m}, we want to estimate f ν from the observations. To reach this goal, we develop an adaptive wavelet estimator based on a hard thresholding rule. Adopting the mean integrated squared error over Besov balls, we prove that it attains a sharp rate of convergence. Simulation results are reported to support our theoretical findings.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号