首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The scaled (two-parameter) Type I generalized logistic distribution (GLD) is considered with the known shape parameter. The ML method does not yield an explicit estimator for the scale parameter even in complete samples. In this article, we therefore construct a new linear estimator for scale parameter, based on complete and doubly Type-II censored samples, by making linear approximations to the intractable terms of the likelihood equation using least-squares (LS) method, a new approach of linearization. We call this as linear approximate maximum likelihood estimator (LAMLE). We also construct LAMLE based on Taylor series method of linear approximation and found that this estimator is slightly biased than that based on the LS method. A Monte Carlo simulation is used to investigate the performance of LAMLE and found that it is almost as efficient as MLE, though biased than MLE. We also compare unbiased LAMLE with BLUE based on the exact variances of the estimators and interestingly this new unbiased LAMLE is found just as efficient as the BLUE in both complete and Type-II censored samples. Since MLE is known as asymptotically unbiased, in large samples we compare unbiased LAMLE with MLE and found that this estimator is almost as efficient as MLE. We have also discussed interval estimation of the scale parameter from complete and Type-II censored samples. Finally, we present some numerical examples to illustrate the construction of the new estimators developed here.  相似文献   

2.
Estimation of variance based on a ranked set sample   总被引:3,自引:0,他引:3  
In this paper we examine the problem of the estimation of the variance σ2 of a population based on a ranked set sample (RSS) from a nonparametric point of view. It is well known that based on a single cycle RSS, there does not exist an unbiased estimate of σ2. We show that for more than one cycle, it is possible to construct a class of quadratic unbiased estimates of σ2 in both balanced and unbalanced cases. Moreover, a minimum variance unbiased quadratic nonnegative estimate of σ2 within a certain class of quadratic estimates is derived.  相似文献   

3.
Ranked set sampling (RSS) was first proposed by McIntyre [1952. A method for unbiased selective sampling, using ranked sets. Australian J. Agricultural Res. 3, 385–390] as an effective way to estimate the unknown population mean. Chuiv and Sinha [1998. On some aspects of ranked set sampling in parametric estimation. In: Balakrishnan, N., Rao, C.R. (Eds.), Handbook of Statistics, vol. 17. Elsevier, Amsterdam, pp. 337–377] and Chen et al. [2004. Ranked Set Sampling—Theory and Application. Lecture Notes in Statistics, vol. 176. Springer, New York] have provided excellent surveys of RSS and various inferential results based on RSS. In this paper, we use the idea of order statistics from independent and non-identically distributed (INID) random variables to propose ordered ranked set sampling (ORSS) and then develop optimal linear inference based on ORSS. We determine the best linear unbiased estimators based on ORSS (BLUE-ORSS) and show that they are more efficient than BLUE-RSS for the two-parameter exponential, normal and logistic distributions. Although this is not the case for the one-parameter exponential distribution, the relative efficiency of the BLUE-ORSS (to BLUE-RSS) is very close to 1. Furthermore, we compare both BLUE-ORSS and BLUE-RSS with the BLUE based on order statistics from a simple random sample (BLUE-OS). We show that BLUE-ORSS is uniformly better than BLUE-OS, while BLUE-RSS is not as efficient as BLUE-OS for small sample sizes (n<5n<5).  相似文献   

4.
Comparisons of best linear unbiased estimators with some other prominent estimators have been carried out over the last 50 years since the ground breaking work of Lloyd [E.H. Lloyd, Least squares estimation of location and scale parameters using order statistics, Biometrika 39 (1952), pp. 88–95]. These comparisons have been made under many different criteria across different parametric families of distributions. A noteworthy one is by Nagaraja [H.N. Nagaraja, Comparison of estimators and predictors from two-parameter exponential distribution, Sankhyā Ser. B 48 (1986), pp. 10–18], who made a comparison of best linear unbiased (BLUE) and best linear invariant (BLIE) estimators in the case of exponential distribution. In this paper, continuing along the same lines by assuming a Type II right censored sample from a scaled-exponential distribution, we first compare BLUE and BLIE of the exponential mean parameter in terms of Pitman closeness (nearness) criterion. We show that the BLUE is always Pitman closer than the BLIE. Next, we introduce the notions of Pitman monotonicity and Pitman consistency, and then establish that both BLUE and BLIE possess these two properties.  相似文献   

5.
The problem considered in this paper is that of unbiased estimation of the variance of an exponential distribution using a ranked set sample (RSS). We propose some unbiased estimators each of which is better than the non-parametric minimum variance quadratic unbiased estimator based on a balanced ranked set sample as well as the uniformly minimum variance unbiased estimator based on a simple random sample (SRS) of the same size. Relative performances of the proposed estimators and a few other properties of the estimators including their robustness under imperfect ranking have also been studied.  相似文献   

6.
The first two moments and product moments of absolute values of order statistics are obtained for the double exponential and the double Weibull distributions. In both of the distributions an optimum linear unbiased estimator of the scale parameter, by absolute values of the order statistics, is obtained from complete and censored samples of size n=3(1)10. It is found that the new estimator is generally more efficient than the best linear unbiased estimator (BLUE) of the scale parameter by order statistcs in both of the distributions.  相似文献   

7.
Wu et al. [Computational comparison for weighted moments estimators and BLUE of the scale parameter of a Pareto distribution with known shape parameter under type II multiply censored sample, Appl. Math. Comput. 181 (2006), pp. 1462–1470] proposed the weighted moments estimators (WMEs) of the scale parameter of a Pareto distribution with known shape parameter on a multiply type II-censored sample. They claimed that some WMEs are better than the best linear unbiased estimator (BLUE) based on the exact mean-squared error (MSE). In this paper, the general WME (GWME) is proposed and the computational comparison of the proposed estimator with the WMEs and BLUE is done on the basis of the exact MSE for given sample sizes and different censoring schemes. As a result, the GWME is performing better than the best estimator among 12 WMEs and BLUE for all cases. Therefore, GWME is recommended for use. At last, one example is given to demonstrate the proposed GWME.  相似文献   

8.
Ranked set sampling (RSS) is a sampling procedure that can be used to improve the cost efficiency of selecting sample units of an experiment or a study. In this paper, RSS is considered for estimating the location and scale parameters a and b>0, as well as the population mean from the family F((x?a)/b). Modified best linear unbiased estimators (BLUEs) and best linear invariant estimators (BLIEs) are considered. Numerical computations with different location-scale distributions and different sample sizes are conducted to assess the efficiency of the suggested estimators. It is found that the modified BLIEs are uniformly higher than that of BLUEs for all distributions considered in this study. The modified BLUE and BLIE are more efficient when the underlying distribution is symmetric.  相似文献   

9.
A new estimator of the scale parameter by the optimum linear combination of absolute values of order statistics in symmetric location-scale families with known location parameter (without loss of generality assumed to be zero) from complete and Type II censored samples is introduced and is termed as optimum unbiased absolute estimator of the scale parameter. The new estimator of the scale parameter is compared with the corresponding best linear unbiased estimator (BLUE) in the rectangular and normal distributions. Generally it is found that the new estimator is more efficient than the BLUE.  相似文献   

10.
Asymptotically best linear unbiased estimators (ABLUE) of quantiles, x^., in the two-parameter (location-scale) exponential and double exponential families are obtained as linear combinations of two suitably chosen order statistics. Exact formulae for the linear combinations are given as functions of £. The derived estimators in both cases compare favorably with the usual nonparametric estimator. Also, in the exponential case the derived estimator compares favorably with the Sarhan-Greenberg BLUE based on a complete sample  相似文献   

11.
Linear estimation and prediction based on several samples of generalized order statistics from generalized Pareto distributions is considered. Representations of best linear unbiased estimators (BLUEs) and best linear equivariant estimators in location-scale families are derived, as well as corresponding optimal linear predictors. Moreover, we study positivity of the linear estimators of the scale parameter. An example illustrates that the BLUE may attain negative values with positive probability in certain situations.  相似文献   

12.
In this paper we consider the problem of estimating the reliability of an exponential component based on a Ranked Set Sample (RSS) of size n. Given the first r observations of that sample, 1≤r≤n, we construct an unbiased estimator for this reliability and we show that these n unbiased estimators are the only ones in a certain class of estimators. The variances of some of these estimators are compared. By viewing the observations of the RSS of size n as the lifetimes of n independent k-out-of-n systems, 1≤k≤n, we are able to utilize known properties of these systems in conjunction with the powerful tools of majorization and Schur functions to derive our results.  相似文献   

13.
The minimum variance unbiased estimators (MVUEs) of the parameters for various distributions are extensively studied under ranked set sampling (RSS). However, the results in existing literatures are only locally MVUEs, i.e. the MVUE in a class of some unbiased estimators is obtained. In this paper, the global MVUE of the parameter in a truncated parameter family is obtained, that is to say, it is the MVUE in the class of all unbiased estimators. Firstly we find the optimal RSS according to the character of a truncated parameter family, i.e. arrange RSS based on complete and sufficient statistics of independent and identically distributed samples. Then under this RSS, the global MVUE of the parameter in a truncated parameter family is found. Numerical simulations for some usual distributions in this family fully support the result from the above two-step optimizations. A real data set is used for illustration.  相似文献   

14.
In this paper we consider the problem of unbiased estimation of the distribution function of an exponential population using order statistics based on a random sample. We present a (unique) unbiased estimator based on a single, say ith, order statistic and study some properties of the estimator for i = 2. We also indicate how this estimator can be utilized to obtain unbiased estimators when a few selected order statistics are available as well as when the sample is selected following an alternative sampling procedure known as ranked set sampling. It is further proved that for a ranked set sample of size two, the proposed estimator is uniformly better than the conventional nonparametric unbiased estimator, further, for a general sample size, a modified ranked set sampling procedure provides an unbiased estimator uniformly better than the conventional nonparametric unbiased estimator based on the usual ranked set sampling procedure.  相似文献   

15.
ABSTRACT

In this paper, we consider the best linear unbiased estimators (BLUEs) based on double ranked set sampling (DRSS) and ordered DRSS (ODRSS) schemes for the simple linear regression model with replicated observations. We assume three symmetric distributions for the random error term, i.e., normal, Laplace and some scale contaminated normal distributions. The proposed BLUEs under DRSS (BLUEs-DRSS) and ODRSS (BLUEs-ODRSS) are compared with the BLUEs based on ordered simple random sampling (OSRS), ranked set sampling (RSS), and ordered RSS (ORSS) schemes. These estimators are compared in terms of relative efficiency (RE), RE of determinant (RED), and RE of trace (RET). It is found that the BLUEs-ODRSS are uniformly better than the BLUEs based on OSRS, RSS, ORSS, and DRSS schemes. We also compare the estimators based on imperfect RSS (IRSS) schemes. It is worth mentioning here that the BLUEs under ordered imperfect DRSS (OIDRSS) are better than their counterparts based on IRSS, ordered IRSS (OIRSS), and imperfect DRSS (IDRSS) methods. Moreover, for sensitivity analysis of the BLUEs, we calculate REs and REDs of the BLUEs under the assumption of normality when in fact the parent distribution follows a non normal symmetric distribution. It turns out that even under violation of normality assumptions, BLUEs of the intercept and the slope parameters are found to be unbiased with equal REs under each sampling scheme. It is also observed that the BLUEs under ODRSS are more efficient than the existing BLUEs.  相似文献   

16.
In this study some new unbiased estimators based on order statistics are proposed for the scale parameter in some family of scale distributions. These new estimators are suitable for the cases of complete (uncensored) and symmetric doubly Type-II censored samples. Further, they can be adapted to Type II right or Type II left censored samples. In addition, unbiased standard deviation estimators of the proposed estimators are also given. Moreover, unlike BLU estimators based on order statistics, expectation and variance-covariance of relevant order statistics are not required in computing these new estimators.

Simulation studies are conducted to compare performances of the new estimators with their counterpart BLU estimators for small sample sizes. The simulation results show that most of the proposed estimators in general perform almost as good as the counterpart BLU estimators; even some of them are better than BLU in some cases. Furthermore, a real data set is used to illustrate the new estimators and the results obtained parallel with those of BLUE methods.  相似文献   


17.
The exact inference and prediction intervals for the K-sample exponential scale parameter under doubly Type-II censored samples are derived using an algorithm of Huffer and Lin [Huffer, F.W. and Lin, C.T., 2001, Computing the joint distribution of general linear combinations of spacings or exponen-tial variates. Statistica Sinica, 11, 1141–1157.]. This approach provides a simple way to determine the exact percentage points of the pivotal quantity based on the best linear unbiased estimator in order to develop exact inference for the scale parameter as well as to construct exact prediction intervals for failure times unobserved in the ith sample. Similarly, exact prediction intervals for failure times of units from a future sample can also be easily obtained.  相似文献   

18.
Abstract

In environmental monitoring and assessment, the main focus is to achieve observational economy and to collect data with unbiased, efficient and cost-effective sampling methods. Ranked set sampling (RSS) is one traditional method that is mostly used for accomplishing observational economy. In this article, we propose an unbiased sampling scheme, named paired double RSS (PDRSS) for estimating the population mean. We study the performance of the mean estimators under PDRSS based on perfect and imperfect rankings. It is shown that, for perfect ranking, the variance of the mean estimator under PDRSS is always less than the variance of mean estimator based on simple random sampling, paired RSS and RSS. The mean estimators under RSS, median RSS, PDRSS, and double RSS are also compared with the regression estimator of population mean based on SRS. The procedure is also illustrated with a case study using a real data set.  相似文献   

19.
Optimal estimation in rotation patterns   总被引:1,自引:0,他引:1  
The aim of this paper is to examine the setting of surveys repeated over time when the elements in the sample are rotated in a predesigned way. On each occasion the best linear unbiased estimator (BLUE) of the current population mean, built on all past responses, is to be found. The most straightforward approach would be to compute the estimator as a solution of a least squares problem with linear restrictions. However, this method has certain drawbacks related to the fact that the size of the response data set increases over time. We follow a different approach based on finding linear recurrence relationships between optimal estimators obtained on successive occasions. Most of the original disadvantages are then corrected. In this context we present the solution to the BLUE estimation problem for some—sufficiently regular—classes of rotation patterns.  相似文献   

20.
This paper compares minimum distance estimation with best linear unbiased estimation to determine which technique provides the most accurate estimates for location and scale parameters as applied to the three parameter Pareto distribution. Two minimum distance estimators are developed for each of the three distance measures used (Kolmogorov, Cramer‐von Mises, and Anderson‐Darling) resulting in six new estimators. For a given sample size 6 or 18 and shape parameter 1(1)4, the location and scale parameters are estimated. A Monte Carlo technique is used to generate the sample sets. The best linear unbiased estimator and the six minimum distance estimators provide parameter estimates based on each sample set. These estimates are compared using mean square error as the evaluation tool. Results show that the best linear unbaised estimator provided more accurate estimates of location and scale than did the minimum estimators tested.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号