首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 234 毫秒
1.
In this work, we propose a technique of estimating the location parameter μ and scale parameter σ of Type-I generalized logistic distribution by U-statistics constructed by using best linear functions of order statistics as kernels. The efficiency comparison of the proposed estimators with respect to maximum likelihood estimators is also made.  相似文献   

2.
A progressive hybrid censoring scheme is a mixture of type-I and type-II progressive censoring schemes. In this paper, we mainly consider the analysis of progressive type-II hybrid-censored data when the lifetime distribution of the individual item is the normal and extreme value distributions. Since the maximum likelihood estimators (MLEs) of these parameters cannot be obtained in the closed form, we propose to use the expectation and maximization (EM) algorithm to compute the MLEs. Also, the Newton–Raphson method is used to estimate the model parameters. The asymptotic variance–covariance matrix of the MLEs under EM framework is obtained by Fisher information matrix using the missing information and asymptotic confidence intervals for the parameters are then constructed. This study will end up with comparing the two methods of estimation and the asymptotic confidence intervals of coverage probabilities corresponding to the missing information principle and the observed information matrix through a simulation study, illustrated examples and real data analysis.  相似文献   

3.
This paper deals with estimation of parameters and the mean life of a mixed failure time distribution that has a discrete probability mass at zero and an exponential distribution with mean O for positive values. A new sampling scheme similar to Jayade and Prasad (1990) is proposed for estimation of parameters. We derive expressions for biases and mean square errors (MSEs) of the maximum likelihood estimators (MLEs). We also obtain the uniformly minimum variance unbiased estimators (UMVUEs) of the parameters. We compare the estimator of O and mean life fj based on the proposed sampling scheme with the estimators obtained by using the sampling scheme of Jayade and Prasad (1990).  相似文献   

4.
In this paper, we consider the analysis of hybrid censored competing risks data, based on Cox's latent failure time model assumptions. It is assumed that lifetime distributions of latent causes of failure follow Weibull distribution with the same shape parameter, but different scale parameters. Maximum likelihood estimators (MLEs) of the unknown parameters can be obtained by solving a one-dimensional optimization problem, and we propose a fixed-point type algorithm to solve this optimization problem. Approximate MLEs have been proposed based on Taylor series expansion, and they have explicit expressions. Bayesian inference of the unknown parameters are obtained based on the assumption that the shape parameter has a log-concave prior density function, and for the given shape parameter, the scale parameters have Beta–Gamma priors. We propose to use Markov Chain Monte Carlo samples to compute Bayes estimates and also to construct highest posterior density credible intervals. Monte Carlo simulations are performed to investigate the performances of the different estimators, and two data sets have been analysed for illustrative purposes.  相似文献   

5.
A hybrid censoring scheme is a mixture of Type-I and Type-II censoring schemes. We study the estimation of parameters of weighted exponential distribution based on Type-II hybrid censored data. By applying the EM algorithm, maximum likelihood estimators are evaluated. Using Fisher information matrix, asymptotic confidence intervals are provided. By applying Markov chain Monte Carlo techniques, Bayes estimators, and corresponding highest posterior density confidence intervals of parameters are obtained. Monte Carlo simulations are performed to compare the performances of the different methods, and one dataset is analyzed for illustrative purposes.  相似文献   

6.
Cooray and Ananda introduced a two-parameter generalized Half-Normal distribution which is useful for modelling lifetime data, while its maximum likelihood estimators (MLEs) are biased in finite samples. This motivates us to construct nearly unbiased estimators for the unknown parameters of the model. In this paper, we adopt two approaches for bias reduction of the MLEs of the parameters of generalized Half-Normal distribution. The first approach is the analytical methodology suggested by Cox and Snell and the second is based on parametric Bootstrap resampling method. Additionally, the method of moments (MMEs) is used for comparison purposes. The numerical evidence shows that the analytic bias-corrected estimators significantly outperform their bootstrapped-based counterpart for small and moderate samples as well as for MLEs and MMEs. Also, it is apparent from the results that bias- corrected estimates of shape parameter perform better than that of scale parameter. Further, the results show that bias-correction scheme yields nearly unbiased estimates. Finally, six fracture toughness real data sets illustrate the application of our methods.  相似文献   

7.
In this article, we consider a competing cause scenario and assume the wider family of Conway–Maxwell–Poisson (COM–Poisson) distribution to model the number of competing causes. Assuming the type of the data to be interval censored, the main contribution is in developing the steps of the expectation maximization (EM) algorithm to determine the maximum likelihood estimates (MLEs) of the model parameters. A profile likelihood approach within the EM framework is proposed to estimate the COM–Poisson shape parameter. An extensive simulation study is conducted to evaluate the performance of the proposed EM algorithm. Model selection within the wider class of COM–Poisson distribution is carried out using likelihood ratio test and information-based criteria. A study to demonstrate the effect of model mis-specification is also carried out. Finally, the proposed estimation method is applied to a data on smoking cessation and a detailed analysis of the obtained results is presented.  相似文献   

8.
In this paper, a new compounding distribution, named the Weibull–Poisson distribution is introduced. The shape of failure rate function of the new compounding distribution is flexible, it can be decreasing, increasing, upside-down bathtub-shaped or unimodal. A comprehensive mathematical treatment of the proposed distribution and expressions of its density, cumulative distribution function, survival function, failure rate function, the kth raw moment and quantiles are provided. Maximum likelihood method using EM algorithm is developed for parameter estimation. Asymptotic properties of the maximum likelihood estimates are discussed, and intensive simulation studies are conducted for evaluating the performance of parameter estimation. The use of the proposed distribution is illustrated with examples.  相似文献   

9.
The lognormal distribution is quite commonly used as a lifetime distribution. Data arising from life-testing and reliability studies are often left truncated and right censored. Here, the EM algorithm is used to estimate the parameters of the lognormal model based on left truncated and right censored data. The maximization step of the algorithm is carried out by two alternative methods, with one involving approximation using Taylor series expansion (leading to approximate maximum likelihood estimate) and the other based on the EM gradient algorithm (Lange, 1995). These two methods are compared based on Monte Carlo simulations. The Fisher scoring method for obtaining the maximum likelihood estimates shows a problem of convergence under this setup, except when the truncation percentage is small. The asymptotic variance-covariance matrix of the MLEs is derived by using the missing information principle (Louis, 1982), and then the asymptotic confidence intervals for scale and shape parameters are obtained and compared with corresponding bootstrap confidence intervals. Finally, some numerical examples are given to illustrate all the methods of inference developed here.  相似文献   

10.
The paper deals with the problem of parameter estimation in the presence of a guess value and attempts to justify the use of Bayes estimators as an alternative to ordinary shrinkage estimators. Finally, certain Bayes estimators of exponential parameters are obtained under type II censoring, and these are compared with the corresponding MLEs and ordinary shrinkage estimators using a Monte Carlo study.  相似文献   

11.
Debasis Kundu 《Statistics》2017,51(6):1377-1397
Azzalini [A class of distributions which include the normal. Scand J Stat. 1985;12:171–178] introduced a skew-normal distribution of which normal distribution is a special case. Recently, Kundu [Geometric skew normal distribution. Sankhya Ser B. 2014;76:167–189] introduced a geometric skew-normal distribution and showed that it has certain advantages over Azzalini's skew-normal distribution. In this paper we discuss about the multivariate geometric skew-normal (MGSN) distribution. It can be used as an alternative to Azzalini's skew-normal distribution. We discuss different properties of the proposed distribution. It is observed that the joint probability density function of the MGSN distribution can take a variety of shapes. Several characterization results have been established. Generation from an MGSN distribution is quite simple, hence the simulation experiments can be performed quite easily. The maximum likelihood estimators of the unknown parameters can be obtained quite conveniently using the expectation–maximization (EM) algorithm. We perform some simulation experiments and it is observed that the performances of the proposed EM algorithm are quite satisfactory. Furthermore, the analyses of two data sets have been performed, and it is observed that the proposed methods and the model work very well.  相似文献   

12.
Recently Sarhan and Balakrishnan [2007. A new class of bivariate distribution and its mixture. Journal of Multivariate Analysis 98, 1508–1527] introduced a new bivariate distribution using generalized exponential and exponential distributions. They discussed several interesting properties of this new distribution. Unfortunately, they did not discuss any estimation procedure of the unknown parameters. In this paper using the similar idea as of Sarhan and Balakrishnan [2007. A new class of bivariate distribution and its mixture. Journal of Multivariate Analysis 98, 1508–1527], we have proposed a singular bivariate distribution, which has an extra shape parameter. It is observed that the marginal distributions of the proposed bivariate distribution are more flexible than the corresponding marginal distributions of the Marshall–Olkin bivariate exponential distribution, Sarhan–Balakrishnan's bivariate distribution or the bivariate generalized exponential distribution. Different properties of this new distribution have been discussed. We provide the maximum likelihood estimators of the unknown parameters using EM algorithm. We reported some simulation results and performed two data analysis for illustrative purposes. Finally we propose some generalizations of this bivariate model.  相似文献   

13.
The maximum likelihood estimates (MLEs) of the parameters of a two-parameter lognormal distribution with left truncation and right censoring are developed through the Expectation Maximization (EM) algorithm. For comparative purpose, the MLEs are also obtained by the Newton–Raphson method. The asymptotic variance-covariance matrix of the MLEs is obtained by using the missing information principle, under the EM framework. Then, using asymptotic normality of the MLEs, asymptotic confidence intervals for the parameters are constructed. Asymptotic confidence intervals are also obtained using the estimated variance of the MLEs by the observed information matrix, and by using parametric bootstrap technique. Different confidence intervals are then compared in terms of coverage probabilities, through a Monte Carlo simulation study. A prediction problem concerning the future lifetime of a right censored unit is also considered. A numerical example is given to illustrate all the inferential methods developed here.  相似文献   

14.
The aim of this paper is twofold. First we discuss the maximum likelihood estimators of the unknown parameters of a two-parameter Birnbaum–Saunders distribution when the data are progressively Type-II censored. The maximum likelihood estimators are obtained using the EM algorithm by exploiting the property that the Birnbaum–Saunders distribution can be expressed as an equal mixture of an inverse Gaussian distribution and its reciprocal. From the proposed EM algorithm, the observed information matrix can be obtained quite easily, which can be used to construct the asymptotic confidence intervals. We perform the analysis of two real and one simulated data sets for illustrative purposes, and the performances are quite satisfactory. We further propose the use of different criteria to compare two different sampling schemes, and then find the optimal sampling scheme for a given criterion. It is observed that finding the optimal censoring scheme is a discrete optimization problem, and it is quite a computer intensive process. We examine one sub-optimal censoring scheme by restricting the choice of censoring schemes to one-step censoring schemes as suggested by Balakrishnan (2007), which can be obtained quite easily. We compare the performances of the sub-optimal censoring schemes with the optimal ones, and observe that the loss of information is quite insignificant.  相似文献   

15.
A hybrid censoring is a mixture of Type-I and Type-II censoring schemes. This article presents the statistical inferences on Weibull parameters when the data are hybrid censored. The maximum likelihood estimators (MLEs) and the approximate maximum likelihood estimators are developed for estimating the unknown parameters. Asymptotic distributions of the MLEs are used to construct approximate confidence intervals. Bayes estimates and the corresponding highest posterior density credible intervals of the unknown parameters are obtained under suitable priors on the unknown parameters and using the Gibbs sampling procedure. The method of obtaining the optimum censoring scheme based on the maximum information measure is also developed. Monte Carlo simulations are performed to compare the performances of the different methods and one data set is analyzed for illustrative purposes.  相似文献   

16.
In most applications, the parameters of a mixture of linear regression models are estimated by maximum likelihood using the expectation maximization (EM) algorithm. In this article, we propose the comparison of three algorithms to compute maximum likelihood estimates of the parameters of these models: the EM algorithm, the classification EM algorithm and the stochastic EM algorithm. The comparison of the three procedures was done through a simulation study of the performance (computational effort, statistical properties of estimators and goodness of fit) of these approaches on simulated data sets.

Simulation results show that the choice of the approach depends essentially on the configuration of the true regression lines and the initialization of the algorithms.  相似文献   

17.
Recently, Rayleigh distribution has received considerable attention in the statistical literature. In this article, we consider the point and interval estimation of the functions of the unknown parameters of a two-parameter Rayleigh distribution. First, we obtain the maximum likelihood estimators (MLEs) of the unknown parameters. The MLEs cannot be obtained in explicit forms, and we propose to use the maximization of the profile log-likelihood function to compute the MLEs. We further consider the Bayesian inference of the unknown parameters. The Bayes’ estimates and the associated credible intervals cannot be obtained in closed forms. We use the importance sampling technique to approximate (compute) the Bayes’ estimates and the associated credible intervals. For comparison purposes, we have also used the exact method to compute the Bayes’ estimates and the corresponding credible intervals. Monte Carlo simulations are performed to compare the performances of the proposed method, and one dataset has been analyzed for illustrative purposes. We further consider the Bayes’ prediction problem based on the observed samples, and provide the appropriate predictive intervals. A data example has been provided for illustrative purposes.  相似文献   

18.
Recently, Lee and Cha proposed two general classes of discrete bivariate distributions. They have discussed some general properties and some specific cases of their proposed distributions. In this paper we have considered one model, namely bivariate discrete Weibull distribution, which has not been considered in the literature yet. The proposed bivariate discrete Weibull distribution is a discrete analogue of the Marshall–Olkin bivariate Weibull distribution. We study various properties of the proposed distribution and discuss its interesting physical interpretations. The proposed model has four parameters, and because of that it is a very flexible distribution. The maximum likelihood estimators of the parameters cannot be obtained in closed forms, and we have proposed a very efficient nested EM algorithm which works quite well for discrete data. We have also proposed augmented Gibbs sampling procedure to compute Bayes estimates of the unknown parameters based on a very flexible set of priors. Two data sets have been analyzed to show how the proposed model and the method work in practice. We will see that the performances are quite satisfactory. Finally, we conclude the paper.  相似文献   

19.
In this paper, we assume the number of competing causes to follow an exponentially weighted Poisson distribution. By assuming the initial number of competing causes can undergo destruction and that the population of interest has a cure fraction, we develop the EM algorithm for the determination of the MLEs of the model parameters of such a general cure model. This model is more flexible than the promotion time cure model and also provides an interesting and realistic interpretation of the biological mechanism of the occurrence of an event of interest. Instead of assuming a particular parametric distribution for the lifetime, we assume the lifetime to belong to the wider class of generalized gamma distribution. This allows us to carry out a model discrimination to select a parsimonious lifetime distribution that provides the best fit to the data. Within the EM framework, a two-way profile likelihood approach is proposed to estimate the shape parameters. An extensive Monte Carlo simulation study is carried out to demonstrate the performance of the proposed estimation method. Model discrimination is carried out by means of the likelihood ratio test and information-based methods. Finally, a data on melanoma is analyzed for illustrative purpose.  相似文献   

20.
Based on progressively type-II censored data, the maximum-likelihood estimators (MLEs) for the Lomax parameters are derived using the expectation–maximization (EM) algorithm. Moreover, the expected Fisher information matrix based on the missing value principle is computed. Using extensive simulation and three criteria, namely, bias, root mean squared error and Pitman closeness measures, we compare the performance of the MLEs via the EM algorithm and the Newton–Raphson (NR) method. It is concluded that the EM algorithm outperforms the NR method in all the cases. Two real data examples are used to illustrate our proposed estimators.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号