首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Numerous optimization problems arise in survey designs. The problem of obtaining an optimal (or near optimal) sampling design can be formulated and solved as a mathematical programming problem. In multivariate stratified sample surveys usually it is not possible to use the individual optimum allocations for sample sizes to various strata for one reason or another. In such situations some criterion is needed to work out an allocation which is optimum for all characteristics in some sense. Such an allocation may be called an optimum compromise allocation. This paper examines the problem of determining an optimum compromise allocation in multivariate stratified random sampling, when the population means of several characteristics are to be estimated. Formulating the problem of allocation as an all integer nonlinear programming problem, the paper develops a solution procedure using a dynamic programming technique. The compromise allocation discussed is optimal in the sense that it minimizes a weighted sum of the sampling variances of the estimates of the population means of various characteristics under study. A numerical example illustrates the solution procedure and shows how it compares with Cochran's average allocation and proportional allocation.  相似文献   

2.
《统计学通讯:理论与方法》2012,41(16-17):3094-3109
In this article, multivariate extensions of the combination-based test statistics for the comparison of several treatments in the multivariate Randomized Complete Block designs are introduced in case of categorical response variables. Several tests for the multivariate Randomized Complete Block designs, including MANOVA procedure, are compared with the method proposed via a Monte Carlo simulation study. The method has also been applied to a real case study in the field of sensorial testing studies. Results suggest that in each experimental situation where normality of the supposed underlying continuous model is hard to justify and especially when errors have heavy-tailed distributions, the proposed nonparametric procedure can be considered as a valid solution.  相似文献   

3.
The present article discusses alternative regression models and estimation methods for dealing with multivariate fractional response variables. Both conditional mean models, estimable by quasi-maximum likelihood, and fully parametric models (Dirichlet and Dirichlet-multinomial), estimable by maximum likelihood, are considered. A new parameterization is proposed for the parametric models, which accommodates the most common specifications for the conditional mean (e.g., multinomial logit, nested logit, random parameters logit, dogit). The text also discusses at some length the specification analysis of fractional regression models, proposing several tests that can be performed through artificial regressions. Finally, an extensive Monte Carlo study evaluates the finite sample properties of most of the estimators and tests considered.  相似文献   

4.
In multivariate stratified sample survey with L strata, let p-characteristics are defined on each unit of the population. To estimate the unknown p-population means of each characteristic, a random sample is taken out from the population. In multivariate stratified sample survey, the optimum allocation of any characteristic may not be optimum for others. Thus the problem arises to find out an allocation which may be optimum for all characteristics in some sense. Therefore a compromise criterion is needed to workout such allocation. In this paper, the procedure of estimation of p-population means is discussed in the presence of nonresponse when the use of linear cost function is not advisable. A solution procedure is suggested by using lexicographic goal programming problem. The numerical illustrations are given for its practical utility.  相似文献   

5.
This paper presents a methodology based on transforming estimation methods in optimization problems in order to incorporate in a natural way some constraints that contain extra information not considered by standard estimation methods, with the aim of improving the quality of the parameter estimates. We include here three types of such information: bounds for the cumulative distribution function, bounds for the quantiles, and any restrictions on the parameters such as those imposed by the support of the random variable under consideration. The method is quite general and can be applied to many estimation methods such as the maximum likelihood (ML), the method of moments (MOM), the least squares, the least absolute values, and the minimax methods. The performances of the obtained estimates from several families of distributions are investigated for the ML and the MOM, using simulations. The simulation results show that for small sample sizes important gains can be achieved with respect to the case where the above information is ignored. In addition, we discuss sensitivity analysis methods for assessing the influence of observations on the proposed estimators. The method applies to both univariate and multivariate data.  相似文献   

6.
In many environmental sampling situations, the variable of interest is either not easily observable or is too expensive to observe. Under such circumstances, the need arises to observe another variable, related to the variable of interest, so as to estimate the population parameters of interest. We study the performance of two different sampling procedures, i.e. ranked set sampling and stratified simple random sampling, when both stratification and ranking are accomplished on the basis of such a concomitant variable. The relative precision of the two methods is obtained and expressed as a function of population variance, between-stratum and between-rank variation, and the correlation coefficient between the variable of interest and the concomitant variable. The relative precision is computed for several important families of distributions that occur frequently in environmental and ecological work. Under equal allocation of sampling units, stratified simple random sampling is found to perform better than ranked set sampling, when the costs incurred to obtain sample measurements are ignored. When optimum allocation is considered for both methods, ranked set sampling performs better than stratified simple random sampling, when the concomitant variable is not highly correlated with the variable of interest. Furthermore, when the costs of sampling and the costs of measurement are incorporated into the assessment of the relative precision, the ranked set sampling is seen to be more efficient than stratified simple random sampling, particularly when the cost of stratification is high compared with that of ranking. This is generally the case in practice.  相似文献   

7.
In many environmental sampling situations, the variable of interest is either not easily observable or is too expensive to observe. Under such circumstances, the need arises to observe another variable, related to the variable of interest, so as to estimate the population parameters of interest. We study the performance of two different sampling procedures, i.e. ranked set sampling and stratified simple random sampling, when both stratification and ranking are accomplished on the basis of such a concomitant variable. The relative precision of the two methods is obtained and expressed as a function of population variance, between-stratum and between-rank variation, and the correlation coefficient between the variable of interest and the concomitant variable. The relative precision is computed for several important families of distributions that occur frequently in environmental and ecological work. Under equal allocation of sampling units, stratified simple random sampling is found to perform better than ranked set sampling, when the costs incurred to obtain sample measurements are ignored. When optimum allocation is considered for both methods, ranked set sampling performs better than stratified simple random sampling, when the concomitant variable is not highly correlated with the variable of interest. Furthermore, when the costs of sampling and the costs of measurement are incorporated into the assessment of the relative precision, the ranked set sampling is seen to be more efficient than stratified simple random sampling, particularly when the cost of stratification is high compared with that of ranking. This is generally the case in practice.  相似文献   

8.
Latent class models (LCMs) are used increasingly for addressing a broad variety of problems, including sparse modeling of multivariate and longitudinal data, model-based clustering, and flexible inferences on predictor effects. Typical frequentist LCMs require estimation of a single finite number of classes, which does not increase with the sample size, and have a well-known sensitivity to parametric assumptions on the distributions within a class. Bayesian nonparametric methods have been developed to allow an infinite number of classes in the general population, with the number represented in a sample increasing with sample size. In this article, we propose a new nonparametric Bayes model that allows predictors to flexibly impact the allocation to latent classes, while limiting sensitivity to parametric assumptions by allowing class-specific distributions to be unknown subject to a stochastic ordering constraint. An efficient MCMC algorithm is developed for posterior computation. The methods are validated using simulation studies and applied to the problem of ranking medical procedures in terms of the distribution of patient morbidity.  相似文献   

9.
The case of nonresponse in multivariate stratified sampling survey was first introduced by Hansen and Hurwitz in 1946 considering the sampling variances and costs to be deterministic. However, in real life situations sampling variance and cost are often random (stochastic) and have probability distributions. In this article, we have formulated the multivariate stratified sampling in the presence of nonresponse with random sampling variances and costs as a multiobjective stochastic programming problem. Here, the sampling variance and costs are considered random and converted into a deterministic NLPP by using chance constraint and modified E-model. A solution procedure using three different approaches are adopted viz. goal programming, fuzzy programming, and D1 distance method to obtain the compromise allocation for the formulated problem. An empirical study has also been provided to illustrate the computational details.  相似文献   

10.
This article is concerned with the effect of the methods for handling missing values in multivariate control charts. We discuss the complete case, mean substitution, regression, stochastic regression, and the expectation–maximization algorithm methods for handling missing values. Estimates of mean vector and variance–covariance matrix from the treated data set are used to build the multivariate exponentially weighted moving average (MEWMA) control chart. Based on a Monte Carlo simulation study, the performance of each of the five methods is investigated in terms of its ability to obtain the nominal in-control and out-of-control average run length (ARL). We consider three sample sizes, five levels of the percentage of missing values, and three types of variable numbers. Our simulation results show that imputation methods produce better performance than case deletion methods. The regression-based imputation methods have the best overall performance among all the competing methods.  相似文献   

11.
In multivariate cases, usually the minimization of sampling variances is considered as an objective under a cost constraint. Since the variances are not unit free, it is more logical to consider the minimization of the squared coefficients of variation as an objective. In this paper, the problem of optimum compromise allocation in multivariate stratified sampling in the case of non-response as a multi-objective all-integer nonlinear programming problem is described. A solution procedure using four different approaches is considered, namely the value function, goal programming,∈-constraint and distance based, to obtain the compromise allocation for non-response. A numerical example is also presented to illustrate the computational details.  相似文献   

12.
With the advent of modern technology, manufacturing processes have become very sophisticated; a single quality characteristic can no longer reflect a product's quality. In order to establish performance measures for evaluating the capability of a multivariate manufacturing process, several new multivariate capability (NMC) indices, such as NMC p and NMC pm , have been developed over the past few years. However, the sample size determination for multivariate process capability indices has not been thoroughly considered in previous studies. Generally, the larger the sample size, the more accurate an estimation will be. However, too large a sample size may result in excessive costs. Hence, the trade-off between sample size and precision in estimation is a critical issue. In this paper, the lower confidence limits of NMC p and NMC pm indices are used to determine the appropriate sample size. Moreover, a procedure for conducting the multivariate process capability study is provided. Finally, two numerical examples are given to demonstrate that the proper determination of sample size for multivariate process indices can achieve a good balance between sampling costs and estimation precision.  相似文献   

13.
This article examines the use of regression analysis for allocating indirect costs. When multiple regression is used to estimate the weights of several allocation factors, conventional standard errors and correlation coefficients can be misleading with respect to the statistical precision of the cost allocations. This article develops alternative allocation approaches and measures of precision that use linear prediction theory and Bayesian inference. The proposed methods are illustrated using a university indirect cost study.  相似文献   

14.
In many real life situations the linear cost function does not approximate the actual cost incurred adequately. The cost of traveling between the units selected in the sample within a stratum is significant, instead of linear cost function. In this paper, we have considered the problem of finding a compromise allocation for a multivariate stratified sample survey with a significant travel cost within strata is formulated as a problem of non-linear stochastic programming with multiple objective functions. The compromise solutions are obtained through Chebyshev approximation technique, D 1- distance and goal programming. A numerical example is presented to illustrate the computational details of the proposed methods.  相似文献   

15.
A data base that provides a multivariate statistical history for each of a number of individual entities is called a pooled cross-sectional and time series data base in the econometrics literature. In marketing and survey literature the terms panel data or longitudinal data are often used. In management science a convenient term might be management data base. Such a data base provides a particularly rich environment for statistical analysis. This article reviews methods for estimating multivariate relationships particular to each individual entity and for summarizing these relationships for a number of individuals. Inference to a larger population when the data base is viewed as a sample is also considered.  相似文献   

16.
In this article, we study the optimization problem of sample size allocation when the competing risks data are from a progressive type-II censoring in a constant-stress accelerated life test with multiple levels. The failure times of the individual causes are assumed to be statistically independent and exponentially distributed with different parameters. We obtain the estimates of the unknown parameters through a maximum likelihood method, and also derive the Fisher information matrix. We propose three optimization criteria and two search scenarios to obtain the sample size allocation at each stress level. Some numerical results are studied to illustrate the usage of the proposed methods.  相似文献   

17.
This article reviews the exciting and rapidly expanding literature on realized volatility. After presenting a general univariate framework for estimating realized volatilities, a simple discrete time model is presented in order to motivate the main results. A continuous time specification provides the theoretical foundation for the main results in this literature. Cases with and without microstructure noise are considered, and it is shown how microstructure noise can cause severe problems in terms of consistent estimation of the daily realized volatility. Independent and dependent noise processes are examined. The most important methods for providing consistent estimators are presented, and a critical exposition of different techniques is given. The finite sample properties are discussed in comparison with their asymptotic properties. A multivariate model is presented to discuss estimation of the realized covariances. Various issues relating to modelling and forecasting realized volatilities are considered. The main empirical findings using univariate and multivariate methods are summarized.  相似文献   

18.
Realized Volatility: A Review   总被引:1,自引:1,他引:0  
This article reviews the exciting and rapidly expanding literature on realized volatility. After presenting a general univariate framework for estimating realized volatilities, a simple discrete time model is presented in order to motivate the main results. A continuous time specification provides the theoretical foundation for the main results in this literature. Cases with and without microstructure noise are considered, and it is shown how microstructure noise can cause severe problems in terms of consistent estimation of the daily realized volatility. Independent and dependent noise processes are examined. The most important methods for providing consistent estimators are presented, and a critical exposition of different techniques is given. The finite sample properties are discussed in comparison with their asymptotic properties. A multivariate model is presented to discuss estimation of the realized covariances. Various issues relating to modelling and forecasting realized volatilities are considered. The main empirical findings using univariate and multivariate methods are summarized.  相似文献   

19.
In multivariate location problems, the sample mean is most widely used, having various advantages. It is, however, very sensitive to outlying observations and inefficient for data from heavy tailed distributions. In this situation, the spatial median is more robust than the sample mean and could be a reasonable alternative. We reviewed several spatial median based testing methods for multivariate location and compared their significance level and power through Monte Carlo simulations. The results show that bootstrap method is efficient for the estimation of the covariance matrix of the sample spatial median. We also proposed bootstrap simultaneous confidence intervals based on the spatial median for multiple comparisons in the multi-sample case.  相似文献   

20.
Consider a population of individuals who are free of a disease under study, and who are exposed simultaneously at random exposure levels, say X,Y,Z,… to several risk factors which are suspected to cause the disease in the populationm. At any specified levels X=x, Y=y, Z=z, …, the incidence rate of the disease in the population ot risk is given by the exposure–response relationship r(x,y,z,…) = P(disease|x,y,z,…). The present paper examines the relationship between the joint distribution of the exposure variables X,Y,Z, … in the population at risk and the joint distribution of the exposure variables U,V,W,… among cases under the linear and the exponential risk models. It is proven that under the exponential risk model, these two joint distributions belong to the same family of multivariate probability distributions, possibly with different parameters values. For example, if the exposure variables in the population at risk have jointly a multivariate normal distribution, so do the exposure variables among cases; if the former variables have jointly a multinomial distribution, so do the latter. More generally, it is demonstrated that if the joint distribution of the exposure variables in the population at risk belongs to the exponential family of multivariate probability distributions, so does the joint distribution of exposure variables among cases. If the epidemiologist can specify the differnce among the mean exposure levels in the case and control groups which are considered to be clinically or etiologically important in the study, the results of the present paper may be used to make sample size determinations for the case–control study, corresponding to specified protection levels, i.e., size α and 1–β of a statistical test. The multivariate normal, the multinomial, the negative multinomial and Fisher's multivariate logarithmic series exposure distributions are used to illustrate our results.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号