首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The Poisson GWMA (PGWMA) control chart is an extension model of Poisson EWMA chart. It is substantially sensitive to small process shifts for monitoring Poisson observations. Recently, some approaches have been proposed to modify EWMA charts with fast initial response (FIR) features. In this article, we employ these approaches in PGWMA charts and introduce a novel chart called Poisson double GWMA (PDGWMA) chart for comparison. Using simulation, various control schemes are designed and their average run lengths (ARLs) are computer and compared. It is shown that the PDGWMA chart is the first choice in detecting small shifts especially when the shifts are downward, and the PGWMA chart with adjusted time-varying control limits performs excellently in detecting great process shifts during the initial stage.  相似文献   

2.
The generally weighted moving average (GWMA) control chart is an extension model of exponentially weighted moving average (EWMA) control chart. Recently, some approaches have been proposed to modify EWMA charts with fast initial response (FIR) features. We introduce these approaches in GWMA-type charts. Via simulation, various control schemes are designed and then their average run lengths are computed and compared. Based on the overall performance, it is showed that the DGWMA chart is the best choice especially when the shift is moderate, and the GWMA charts provided with additional FIR feature have a good performance only in detecting large shifts during the initial stage.  相似文献   

3.
This study extends the generally weighted moving average (GWMA) control chart by imitating the double exponentially weighted moving average (DEWMA) technique. The proposed chart is called the double generally weighted moving average (DGWMA) control chart. Simulation is employed to evaluate the average run length characteristics of the GWMA, DEWMA and DGWMA control charts. An extensive comparison of these control charts reveals that the DGWMA control chart with time-varying control limits is more sensitive than the GWMA and the DEWMA control charts for detecting medium shifts in the mean of a process when the shifts are between 0.5 and 1.5 standard deviations. Additionally, the GWMA control chart performs better when the mean shifts are below the 0.5 standard deviation, and the DEWMA control performs better when the mean shifts are above the 1.5 standard deviation. The design of the DGWMA control chart is also discussed.  相似文献   

4.
The memory-type control charts are widely used in the process and service industries for monitoring the production processes. The reason is their sensitivity to quickly react against the small process disturbances. Recently, a new cumulative sum (CUSUM) chart has been proposed that uses the exponentially weighted moving average (EWMA) statistic, called the EWMA–CUSUM chart. Similarly, in order to further enhance the sensitivity of the EWMA–CUSUM chart, we propose a new CUSUM chart using the generally weighted moving average (GWMA) statistic, called the GWMA–CUSUM chart, for efficiently monitoring the process mean. The GWMA–CUSUM chart encompasses the existing CUSUM and EWMA–CUSUM charts. Extensive Monte Carlo simulations are used to explore the run length profiles of the GWMA–CUSUM chart. Based on comprehensive run length comparisons, it turns out that the GWMA–CUSUM chart performs substantially better than the CUSUM, EWMA, GWMA, and EWMA–CUSUM charts when detecting small shifts in the process mean. An illustrative example is also presented to explain the implementation and working of the EWMA–CUSUM and GWMA–CUSUM charts.  相似文献   

5.
ABSTRACT

A generally weighted moving average (GWMA) control chart with fast initial response (FIR) features is addressed to monitor an autoregressive process mean shift. Numerical simulations based on average run length (ARL) show that the GWMA control chart with additional FIR feature requires less time to detect small or moderate shifts than GWMA control chart at low level of autocorrelation; whereas these two control charts perform similarly at high level of autocorrelation. Regardless of any level of autocorrelation, GWMA control charts provided with additional FIR feature have a good performance in detecting large shifts during the initial stage.  相似文献   

6.
7.
In this article, we extend a single exponentially weighted moving average semicircle (EWMA-SC) chart to a single generally weighted moving average (GWMA) chart. This new control chart can effectively combine the features of the SC chart with GWMA techniques, and can easily indicate the source and direction of a change. We perform simulations to evaluate the average run length, standard deviation of the run length, and diagnostic abilities of the GWMA-SC and EWMA-SC charts. An extensive comparison shows that the GWMA-SC control chart is more sensitive than the EWMA-SC chart for detecting small shifts in the process mean and/or variability.  相似文献   

8.
Traditionally, using a control chart to monitor a process assumes that process observations are normally and independently distributed. In fact, for many processes, products are either connected or autocorrelated and, consequently, obtained observations are autocorrelative rather than independent. In this scenario, applying an independence assumption instead of autocorrelation for process monitoring is unsuitable. This study examines a generally weighted moving average (GWMA) with a time-varying control chart for monitoring the mean of a process based on autocorrelated observations from a first-order autoregressive process (AR(1)) with random error. Simulation is utilized to evaluate the average run length (ARL) of exponentially weighted moving average (EWMA) and GWMA control charts. Numerous comparisons of ARLs indicate that the GWMA control chart requires less time to detect various shifts at low levels of autocorrelation than those at high levels of autocorrelation. The GWMA control chart is more sensitive than the EWMA control chart for detecting small shifts in a process mean.  相似文献   

9.
In this article, we will present a control chart using normal transformation and generally weighted moving average (GWMA) statistic when the quality characteristic follows the exponential distribution. We will develop the necessary measures to monitor the mean of the process using GWMA statistic and analyze the performance using simulation. The average run lengths for monitoring process average are given for various process shifts. The performance of the proposed chart is examined and compared with the existing control chart. The proposed control chart is effective for the monitoring of small shifts in the mean process. The application of the proposed chart is illustrated with the help of simulated data.  相似文献   

10.
This article extends the generally weighted moving average (GWMA) technique for detecting changes in process variance. The proposed chart is called the generally weighted moving average variance (GWMAV) chart. Simulation is employed to evaluate the average run length (ARL) characteristics of the GWMAV and EWMA control charts. An extensive comparison of these control charts reveals that the GWMAV chart is more sensitive than the EWMA control charts for detecting small shifts in the variance of a process when the shifts are below 1.35 standard deviations. Additionally, the GWMAV control chart performs little better when the variance shifts are between 1.35 and 1.5 standard deviation, and the 2 charts performs similar when the variance shifts are above 1.5 standard deviation. The design of the GWMAV chart is also discussed.  相似文献   

11.
In this article, we propose a new control chart called the maximum chi-square generally weighted moving average (MCSGWMA) control chart. This control chart can effectively combine two generally weighted moving average (GWMA) control charts into a single one and can detect both increases as well as decreases in the process mean and/or variability simultaneously. The average run length (ARL) characteristics of the MCSGWMA and maximum exponentially weighted moving average (MaxEWMA) charts are evaluated by performing computer simulations. The comparison of the ARLs shows that the MCSGWMA control chart performs better than the MaxEWMA control chart.  相似文献   

12.
Abstract

Generally weighted moving average (GWMA) control charts have been validated for effective detection of small process shifts, and perform better than exponentially weighted moving average (EWMA) control charts. These charts are available based on single sampling; however, repetitive sampling charts have received less attention. Here, a GWMA control chart based on repetitive sampling (namely an RS-GWMA chart) is proposed for enhancing detectability of small process shifts. Simulations show that the proposed RS-GWMA chart with large design and small adjustment parameters outperforms existing hybrid EWMA (HEWMA) control charts based on repetitive sampling. An in-silico example is considered for demonstrating the applicability of the proposed RS-GWMA chart.  相似文献   

13.
A control chart procedure has previously been proposed (Champ et al., 1991) for which the Shewhart X ¯-chart, the cumulative sum chart, and the exponentially weighted moving average chart are special cases. The rapid and easy production of these charts, plus many others, is proposed using spreadsheets. In addition, for all these novel charts, the average run lengths are generated as a guide to their likely behaviour. The cumulative sum chart is widely employed in quality control and is considered in greater detail. Charts are designed to exhibit acceptable average run lengths both when the process is in and out of control. A functional technique for parameter selection for such a chart is introduced that results in target average run lengths. It employs the method of artificial neural networks to derive appropriate coefficients. This approach may be extended to any of the charts previously introduced.  相似文献   

14.
A control chart procedure has previously been proposed (Champ et al., 1991) for which the Shewhart X ¥ -chart, the cumulative sum chart, and the exponentially weighted moving average chart are special cases. The rapid and easy production of these charts, plus many others, is proposed using spreadsheets. In addition, for all these novel charts, the average run lengths are generated as a guide to their likely behaviour. The cumulative sum chart is widely employed in quality control and is considered in greater detail. Charts are designed to exhibit acceptable average run lengths both when the process is in and out of control. A functional technique for parameter selection for such a chart is introduced that results in target average run lengths. It employs the method of artificial neural networks to derive appropriate coefficients. This approach may be extended to any of the charts previously introduced.  相似文献   

15.
Non parametric control charts have received increasing attention in the field of statistical process control. This paper presents a non parametric double generally weighted moving average (DGWMA) sign chart for monitoring small deviations when the quality characteristics of a process are unknown. The statistical performance of the non parametric DGWMA sign chart is evaluated and compared with those of other charts, including the exponentially weighted moving average (EWMA), generally weighted moving average (GWMA), and double EWMA (DEWMA) sign charts. Simulation studies indicate that the non parametric DGWMA sign chart with a large design and median adjustment parameters is always more sensitive than other charts in detecting small changes.  相似文献   

16.
Control charts using repetitive group sampling have attracted a great deal of attention during the last few years. In the present article, we attempt to develop a control chart for the multivariate Poisson distribution using the repetitive group sampling scheme. In the proposed control chart, the monitoring statistic from the multivariate Poisson distribution has been used for the quick detection of the deteriorated process to avoid losses. The control coefficients have been estimated using the specified in-control average run lengths. The procedure of the proposed control chart has been explained by using the real-world example and a simulated data set. It has been observed that the proposed control chart is an efficient development for the quick detection of the nonrandom change in the manufacturing process.  相似文献   

17.
A new control chart is proposed by using the belief statistic for the exponential distribution. The structure of the proposed control chart is given to measure the average run length for the shifted process. The comparison of the proposed chart is given with the existing charts in terms of the average run lengths, which shows the outperformance of the proposed chart. The performance of the proposed control chart is also discussed with the help of simulated data.  相似文献   

18.
A general model for the zone control chart is presented. Using this model, it is shown that there are score vectors for zone control charts which result in superior average run length performance in comparison to Shewhart charts with common runs rules.

A fast initial response (FIR) feature for the zone control chart is also proposed. Average run lengths of the zone control chart with this feature are calculated. It is shown that the FIR feature improves zone control chart performance by providing significantly earlier signals when the process is out of control.  相似文献   

19.
The conventional Shewhart-type control chart is developed essentially on the central limit theorem. Thus, the Shewhart-type control chart performs particularly well when the observed process data come from a near-normal distribution. On the other hand, when the underlying distribution is unknown or non-normal, the sampling distribution of a parameter estimator may not be available theoretically. In this case, the Shewhart-type charts are not available. Thus, in this paper, we propose a parametric bootstrap control chart for monitoring percentiles when process measurements have an inverse Gaussian distribution. Through extensive Monte Carlo simulations, we investigate the behaviour and performance of the proposed bootstrap percentile charts. The average run lengths of the proposed percentage charts are investigated.  相似文献   

20.
Control charts are effective tools for signal detection in both manufacturing processes and service processes. Much service data come from a process with variables having nonnormal or unknown distributions. The commonly used Shewhart variable control charts, which depend heavily on the normality assumption, should not be properly used here. In this article, we propose an improved asymmetric EWMA mean chart based on a simple statistic to monitor process mean shift. We explored the sampling properties of the new monitoring statistic and calculated the average run lengths of the proposed asymmetric EWMA mean chart. We recommend the proposed improved asymmetric EWMA mean chart because the average run lengths of the modified charts are more accurate and reasonable than those of the five existed mean charts. A numerical example of service times with a right skewed distribution from a service system of a bank branch is used to illustrate the application of the improved asymmetric EWMA mean chart and to compare it with the five existing mean charts. The proposed chart showed better detection performance than those of the five existing mean charts in monitoring and detecting shifts in the process mean.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号