首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A conference matrix is a square matrix C with zeros on the diagonal and ±1s off the diagonal, such that C T C = CC T  = (n ? 1)I, where I is the identity matrix. Conference matrices are an important class of combinatorial designs due to their many applications in several fields of science, including statistical-experimental designs, telecommunications, elliptic geometry, and more. In this article, conference matrices and their full foldover design are combined together to obtain an alternative method for screening active factors in complicated problems. This method provides a model-independent estimate of the set of active factors and also gives a linearity test for the underlying model.  相似文献   

2.
Consider an incomplete block experiment in which observations are taken from t treatments using an incomplete block design with b blocks of size k < t. Suppose the interest is in estimating the differences of effects of successive treatments. This may occur, for example, if the treatments are different dosages or concentrations of a compound. This article presents A-optimal and MV-optimal incomplete block designs for estimating the the differences of successive treatment effects. Tables of optimal designs are given for k < t ≤ 5 with b ≤ 40.  相似文献   

3.
《Statistics》2012,46(6):1357-1385
ABSTRACT

The early stages of many real-life experiments involve a large number of factors among which only a few factors are active. Unfortunately, the optimal full-dimensional designs of those early stages may have bad low-dimensional projections and the experimenters do not know which factors turn out to be important before conducting the experiment. Therefore, designs with good projections are desirable for factor screening. In this regard, significant questions are arising such as whether the optimal full-dimensional designs have good projections onto low dimensions? How experimenters can measure the goodness of a full-dimensional design by focusing on all of its projections?, and are there linkages between the optimality of a full-dimensional design and the optimality of its projections? Through theoretical justifications, this paper tries to provide answers to these interesting questions by investigating the construction of optimal (average) projection designs for screening either nominal or quantitative factors. The main results show that: based on the aberration and orthogonality criteria the full-dimensional design is optimal if and only if it is optimal projection design; the full-dimensional design is optimal via the aberration and orthogonality if and only if it is uniform projection design; there is no guarantee that a uniform full-dimensional design is optimal projection design via any criterion; the projection design is optimal via the aberration, orthogonality and uniformity criteria if it is optimal via any criterion of them; and the saturated orthogonal designs have the same average projection performance.  相似文献   

4.
In this paper, we propose the application of group screening methods for analyzing data using E(fNOD)-optimal mixed-level supersaturated designs possessing the equal occurrence property. Supersaturated designs are a large class of factorial designs which can be used for screening out the important factors from a large set of potentially active variables. The huge advantage of these designs is that they reduce the experimental cost drastically, but their critical disadvantage is the high degree of confounding among factorial effects. Based on the idea of the group screening methods, the f factors are sub-divided into g “group-factors”. The “group-factors” are then studied using the penalized likelihood statistical analysis methods at a factorial design with orthogonal or near-orthogonal columns. All factors in groups found to have a large effect are then studied in a second stage of experiments. A comparison of the Type I and Type II error rates of various estimation methods via simulation experiments is performed. The results are presented in tables and discussion follows.  相似文献   

5.
Abstract

In this paper the problem of finding exactly optimal sampling designs for estimating the weighted integral of a stochastic process with a product covariance structure (R(s,t)=u(s)v(t), s<t) is discussed. The sampling designs for certain standard processes belonging to the product class are calculated. An asymptotic solution to the design problem also follows as a consequence.  相似文献   

6.
This article examines a family of three-parameter multivariate Laplace distributions ML p (a, μ, Σ) which is closed under constant shifts. Parameter vectors a and μ are called shift and shape parameter, respectively, positive definite p × p-matrix Σ is a scale parameter. The first three moments are derived and used for estimating the parameters. The behavior of the obtained estimates is explored in a simulation experiment.  相似文献   

7.
The authors introduce the notion of split generalized wordlength pattern (GWP), i.e., treatment GWP and block GWP, for a blocked nonregular factorial design. They generalize the minimum aberration criterion to suit this type of design. Connections between factorial design theory and coding theory allow them to obtain combinatorial identities that govern the relationship between the split GWP of a blocked factorial design and that of its blocked consulting design. These identities work for regular and nonregular designs. Furthermore, the authors establish general rules for identifying generalized minimum aberration (GMA) blocked designs through their blocked consulting designs. Finally they tabulate and compare some GMA blocked designs from Hall's orthogonal array OA(16,215,2) of type III.  相似文献   

8.
This article proposes an algorithm to construct efficient balanced multi-level k-circulant supersaturated designs with m factors and n runs. The algorithm generates efficient balanced multi-level k-circulant supersaturated designs very fast. Using the proposed algorithm many balanced multi-level supersaturated designs are constructed and cataloged. A list of many optimal and near optimal, multi-level supersaturated designs is also provided for m ≤ 60 and number of levels (q) ≤10. The algorithm can be used to generate two-level k-circulant supersaturated designs also and some large optimal two-level supersaturated designs are presented. An upper bound to the number of factors in a balanced multi-level supersaturated design such that no two columns are fully aliased is also provided.  相似文献   

9.
Neighbor designs are useful to remove the neighbor effects. In this article, an algorithm is developed and is coded in Visual C + +to generate the initial block for possible first, second,…, and all order neighbor designs. To get the required design, a block (0, 1, 2,…, k ? 1) is then augmented with (v ? 1) blocks obtained by developing the initial block cyclically mod (v ? 1).  相似文献   

10.
We consider the specific transformation of a Wiener process {X(t), t ≥ 0} in the presence of an absorbing barrier a that results when this process is “time-locked” with respect to its first passage time T a through a criterion level a, and the evolution of X(t) is considered backwards (retrospectively) from T a . Formally, we study the random variables defined by Y(t) ≡ X(T a  ? t) and derive explicit results for their density and mean, and also for their asymptotic forms. We discuss how our results can aid interpretations of time series “response-locked” to their times of crossing a criterion level.  相似文献   

11.
By means of a search design one is able to search for and estimate a small set of non‐zero elements from the set of higher order factorial interactions in addition to estimating the lower order factorial effects. One may be interested in estimating the general mean and main effects, in addition to searching for and estimating a non‐negligible effect in the set of 2‐ and 3‐factor interactions, assuming 4‐ and higher‐order interactions are all zero. Such a search design is called a ‘main effect plus one plan’ and is denoted by MEP.1. Construction of such a plan, for 2m factorial experiments, has been considered and developed by several authors and leads to MEP.1 plans for an odd number m of factors. These designs are generally determined by two arrays, one specifying a main effect plan and the other specifying a follow‐up. In this paper we develop the construction of search designs for an even number of factors m, m≠6. The new series of MEP.1 plans is a set of single array designs with a well structured form. Such a structure allows for flexibility in arriving at an appropriate design with optimum properties for search and estimation.  相似文献   

12.
ABSTRACT

Supersaturated designs (SSDs) constitute a large class of fractional factorial designs which can be used for screening out the important factors from a large set of potentially active ones. A major advantage of these designs is that they reduce the experimental cost dramatically, but their crucial disadvantage is the confounding involved in the statistical analysis. Identification of active effects in SSDs has been the subject of much recent study. In this article we present a two-stage procedure for analyzing two-level SSDs assuming a main-effect only model, without including any interaction terms. This method combines sure independence screening (SIS) with different penalty functions; such as Smoothly Clipped Absolute Deviation (SCAD), Lasso and MC penalty achieving both the down-selection and the estimation of the significant effects, simultaneously. Insights on using the proposed methodology are provided through various simulation scenarios and several comparisons with existing approaches, such as stepwise in combination with SCAD and Dantzig Selector (DS) are presented as well. Results of the numerical study and real data analysis reveal that the proposed procedure can be considered as an advantageous tool due to its extremely good performance for identifying active factors.  相似文献   

13.
Two-level designs are useful to examine a large number of factors in an efficient manner. It is typically anticipated that only a few factors will be identified as important ones. The results can then be reanalyzed using a projection of the original design, projected into the space of the factors that matter. An interesting question is how many intrinsically different type of projections are possible from an initial given design. We examine this question here for the Plackett and Burman screening series with N= 12, 20 and 24 runs and projected dimensions k≤5. As a characterization criterion, we look at the number of repeat and mirror-image runs in the projections. The idea can be applied toany two-level design projected into fewer dimensions.  相似文献   

14.
《Econometric Reviews》2013,32(2):175-194
ABSTRACT

Under a sample selection or non-response problem, where a response variable y is observed only when a condition δ = 1 is met, the identified mean E(y|δ = 1) is not equal to the desired mean E(y). But the monotonicity condition E(y|δ = 1) ≤ E(y|δ = 0) yields an informative bound E(y|δ = 1) ≤ E(y), which is enough for certain inferences. For example, in a majority voting with δ being the vote-turnout, it is enough to know if E(y) > 0.5 or not, for which E(y|δ = 1) > 0.5 is sufficient under the monotonicity. The main question is then whether the monotonicity condition is testable, and if not, when it is plausible. Answering to these queries, when there is a ‘proxy’ variable z related to y but fully observed, we provide a test for the monotonicity; when z is not available, we provide primitive conditions and plausible models for the monotonicity. Going further, when both y and z are binary, bivariate monotonicities of the type P(y, z|δ = 1) ≤ P(y, z|δ = 0) are considered, which can lead to sharper bounds for P(y). As an empirical example, a data set on the 1996 U.S. presidential election is analyzed to see if the Republican candidate could have won had everybody voted, i.e., to see if P(y) > 0.5, where y = 1 is voting for the Republican candidate.  相似文献   

15.
The problem considered is that of finding D-optimal design for the estimation of covariate parameters and the treatment and block contrasts in a block design set up in the presence of non stochastic controllable covariates, when N = 2(mod 4), N being the total number of observations. It is clear that when N ≠ 0 (mod 4), it is not possible to find designs attaining minimum variance for the estimated covariate parameters. Conditions for D-optimum designs for the estimation of covariate parameters were established when each of the covariates belongs to the interval [?1, 1]. Some constructions of D-optimal design have been provided for symmetric balanced incomplete block design (SBIBD) with parameters b = v, r = k = v ? 1, λ =v ? 2 when k = 2 (mod 4) and b is an odd integer.  相似文献   

16.
We consider the problem of constructing search designs for 3m factorial designs. By using projection properties of some three-level orthogonal arrays, some search designs are obtained for 3 ? m ? 11. The new obtained orthogonal search designs are capable of searching and identifying up to four two-factor interactions and estimating them along with the general mean and main effects. The resulted designs have very high searching probabilities; it means that besides the well-known orthogonal structure, they have high ability in searching the true effects.  相似文献   

17.
A clarification is given of the main result (1.1) in Communications in Statistics: Theory and Methods 34:753–766. The term {1 + 6a(r ? a)}1/3 is to be understood as sgn(1 + 6a(r ? a)) | 1 + 6a(r ? a)|1/3. The result is expressed in a more user-friendly form. An issue is raised regarding the common usage of the expression x 1/n when n is even.  相似文献   

18.
Consider observations (representing lifelengths) taken on a random field indexed by lattice points. Estimating the distribution function F(x) = P(X i  ≤ x) is an important problem in survival analysis. We propose to estimate F(x) by kernel estimators, which take into account the smoothness of the distribution function. Under some general mixing conditions, our estimators are shown to be asymptotically unbiased and consistent. In addition, the proposed estimator is shown to be strongly consistent and sharp rates of convergence are obtained.  相似文献   

19.
Two-level regular fractional factorial designs are often used in industry as screening designs to help identify early on in an experimental process those experimental or system variables which have significant effects on the process being studied. When the experimental material to be used in the experiment is heterogenous or the experiment must be performed over several well-defined time periods, blocking is often used as a means to improve experimental efficiency by removing the possible effects of heterogenous experimental material or possible time period effects. In a recent article, Li and Jacroux (2007 Li , F. , Jacroux , M. (2007). Optimal foldover plans for blocked 2 m?k fractional factorial designs. J. Statsist. Plann. Infer 137:24342452. [Google Scholar]) suggested a strategy for constructing optimal follow-up designs for blocked fractional factorial designs using the well-known foldover technique in conjunction with several optimality criteria. In this article, we consider the reverse foldover problem for blocked fractional factorial designs. In particular, given a 2(m+p)?(p+k) blocked fractional factorial design D, we derive simple sufficient conditions which can be used to determine if there exists a 2(m+p?1)?(p?1+k+1) initial fractional factorial design d which yields D as a foldover combined design as well how to generate all such d. Such information is useful in developing an overall experimental strategy in situations where an experimenter wants an overall blocked fractional factorial design with “desirable” properties but also wants the option of analyzing the observed data at the halfway mark to determine if the significant experimental variables are obvious (and the experiment can be terminated) or if a different path of experimentation should be taken from that initially planned.  相似文献   

20.
Consider the problem of discriminating between the polynomial regression models on [?1, 1] and estimating parameters in the models. Zen and Tsai (2002 Zen , M. M. , Tsai , M. H. ( 2002 ). Some criterion-robust optimal designs for the dual problem of model discrimination and parameter estimation . Sankhya Ind. J. Statist. 64 : (Series B, Pt. 3) : 322338 . [Google Scholar]) proposed a multiple-objective optimality criterion, M γ-criterion, which uses weight γ (0 ≤ γ ≤ 1) for model discrimination and α = β = (1 ? γ)/2 for parameter estimation in each model. In this article, we generalize it to a wider setup with different values of α and β. For instance, α = 2 β suggests that the “smaller” model is more likely to be the true model. Using similar techniques, the corresponding criterion-robust optimal design is investigated. A study for the original criterion-robust optimal design with α = β, through M-efficiency, shows that it is good enough for any wider setup.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号