共查询到20条相似文献,搜索用时 15 毫秒
1.
Xia Chen 《统计学通讯:理论与方法》2013,42(15):2498-2514
In this article, we consider the application of the empirical likelihood method to a partially linear single-index model. We focus on the case where some covariates are measured with additive errors. It is shown that the empirical log-likelihood ratio at the true parameter converges to the standard chi-square distribution. Simulations show that the proposed confidence region has coverage probability which is closer to the nominal level, as well as narrower than those of normal approximation method. A real data example is given. 相似文献
2.
The purpose of this article is to use the empirical likelihood method to study construction of the confidence region for the parameter of interest in semiparametric varying-coefficient heteroscedastic partially linear errors-in-variables models. When the variance functions of the errors are known or unknown, we propose the empirical log-likelihood ratio statistics for the parameter of interest. For each case, a nonparametric version of Wilks’ theorem is derived. The results are then used to construct confidence regions of the parameter. A simulation study is carried out to assess the performance of the empirical likelihood method. 相似文献
3.
The purpose of this article is to use the empirical likelihood method to study construction of the confidence region for the parameter of interest in heteroscedastic partially linear errors-in-variables model with martingale difference errors. When the variance functions of the errors are known or unknown, we propose the empirical log-likelihood ratio statistics for the parameter of interest. For each case, a nonparametric version of Wilks’ theorem is derived. The results are then used to construct confidence regions of the parameter. A simulation study is carried out to assess the performance of the empirical likelihood method. 相似文献
4.
In this article, we consider empirical likelihood inference for the parameter in the additive partially linear models when the linear covariate is measured with error. By correcting for attenuation, a corrected-attenuation empirical log-likelihood ratio statistic for the unknown parameter β, which is of primary interest, is suggested. We show that the proposed statistic is asymptotically standard chi-square distribution without requiring the undersmoothing of the nonparametric components, and hence it can be directly used to construct the confidence region for the parameter β. Some simulations indicate that, in terms of comparison between coverage probabilities and average lengths of the confidence intervals, the proposed method performs better than the profile-based least-squares method. We also give the maximum empirical likelihood estimator (MELE) for the unknown parameter β, and prove the MELE is asymptotically normal under some mild conditions. 相似文献
5.
Empirical Likelihood Confidence Region for Parameters in Semi-linear Errors-in-Variables Models 总被引:2,自引:0,他引:2
Abstract. This paper proposes a constrained empirical likelihood confidence region for a parameter in the semi-linear errors-in-variables model. The confidence region is constructed by combining the score function corresponding to the squared orthogonal distance with a constraint on the parameter, and it overcomes that the solution of limiting mean estimation equations is not unique. It is shown that the empirical log likelihood ratio at the true parameter converges to the standard chi-square distribution. Simulations show that the proposed confidence region has coverage probability which is closer to the nominal level, as well as narrower than those of normal approximation of generalized least squares estimator in most cases. A real data example is given. 相似文献
6.
7.
This article is concerned with partially non linear models when the response variables are missing at random. We examine the empirical likelihood (EL) ratio statistics for unknown parameter in non linear function based on complete-case data, semiparametric regression imputation, and bias-corrected imputation. All the proposed statistics are proven to be asymptotically chi-square distribution under some suitable conditions. Simulation experiments are conducted to compare the finite sample behaviors of the proposed approaches in terms of confidence intervals. It showed that the EL method has advantage compared to the conventional method, and moreover, the imputation technique performs better than the complete-case data. 相似文献
8.
Empirical-likelihood based inference for the parameters in a generalized partially linear single-index models (GPLSIM) is investigated. Based on the local linear estimators of the nonparametric parts of the GPLSIM, an estimated empirical likelihood-based statistic of the parametric components is proposed. We show that the resulting statistic is asymptotically standard chi-squared distributed, the confidence regions for the parametric components are constructed. Some simulations are conducted to illustrate the proposed method. 相似文献
9.
In this article, we study the profile likelihood estimation and inference on the partially linear model with a diverging number of parameters. Polynomial splines are applied to estimate the nonparametric component and we focus on constructing profile likelihood ratio statistic to examine the testing problem for the parametric component in the partially linear model. Under some regularity conditions, the asymptotic distribution of profile likelihood ratio statistic is proposed when the number of parameters grows with the sample size. Numerical studies confirm our theory. 相似文献
10.
Tatiane F. N. Melo 《统计学通讯:理论与方法》2014,43(24):5226-5240
In this paper, we obtain an adjusted version of the likelihood ratio (LR) test for errors-in-variables multivariate linear regression models. The error terms are allowed to follow a multivariate distribution in the class of the elliptical distributions, which has the multivariate normal distribution as a special case. We derive a modified LR statistic that follows a chi-squared distribution with a high degree of accuracy. Our results generalize those in Melo and Ferrari (Advances in Statistical Analysis, 2010, 94, pp. 75–87) by allowing the parameter of interest to be vector-valued in the multivariate errors-in-variables model. We report a simulation study which shows that the proposed test displays superior finite sample behavior relative to the standard LR test. 相似文献
11.
In this article, we propose two test statistics for testing the underlying serial correlation in a partially linear single-index model Y = η(Z τα) + X τβ + ? when X is measured with additive error. The proposed test statistics are shown to have asymptotic normal or chi-squared distributions under the null hypothesis of no serial correlation. Monte Carlo experiments are also conducted to illustrate the finite sample performance of the proposed test statistics. The simulation results confirm that these statistics perform satisfactorily in both estimated sizes and powers. 相似文献
12.
In this article, the generalized linear model for longitudinal data is studied. A generalized empirical likelihood method is proposed by combining generalized estimating equations and quadratic inference functions based on the working correlation matrix. It is proved that the proposed generalized empirical likelihood ratios are asymptotically chi-squared under some suitable conditions, and hence it can be used to construct the confidence regions of the parameters. In addition, the maximum empirical likelihood estimates of parameters are obtained, and their asymptotic normalities are proved. Some simulations are undertaken to compare the generalized empirical likelihood and normal approximation-based method in terms of coverage accuracies and average areas/lengths of confidence regions/intervals. An example of a real data is used for illustrating our methods. 相似文献
13.
This article aims at making an empirical likelihood inference of regression parameter in partial linear model when the response variable is right censored randomly. The present studies are mainly designed to use empirical likelihood (EL) method based on synthetic dependent data, and the result cannot be applied directly due to the unknown weights in it. In this paper, we introduce a censored empirical log-likelihood ratio and demonstrate that its limiting distribution is a standard chi-square distribution. The estimating procedure of β is developed based on piecewise polynomial method. As a result, the p-value of test and the confidence interval can be obtained without estimating other quantities. Some simulation studies are conducted to highlight the performance of the proposed EL method, and the results show a good performance. Finally, we apply our method into the real example of multiple myeloma data and show the proof of theorem. 相似文献
14.
In this article, we propose an empirical likelihood-based test to check the existence of serial correlation in partial linear errors-in-variables models. A nonparametric version of Wilk' theorem is derived, which says that our proposed test has an asymptotic chi-square distribution. Simulation results reveal that the finite sample performance of our proposed test is satisfactory in both size and power. 相似文献
15.
This article aims at proposing a new type of empirical likelihood testing procedure based on the Wilks theorem and imputed value in censored partial linear model. The present study is mainly designed to use empirical likelihood (EL) method based on synthetic dependent data, and the result can not be applied directly due to the weights in it. In this article, a censored empirical log-likelihood ratio is introduced to tackle this problem. Particularly, we demonstrate that its limiting distribution is a standard chi-squared distribution with freedom of one. This method is used to calculate the p-value and construct the confidence interval. Some simulation studies are conducted to highlight the performance of the proposed EL method, and the results show that it performs well. Finally, an illustration is given using the Stanford Heart Transplant data. 相似文献
16.
In this article, empirical likelihood inferences for semiparametric varying-coefficient partially linear models with longitudinal data are investigated. We propose a groupwise empirical likelihood procedure to handle the inter-series dependence of the longitudinal data. By using residual-adjustment, an empirical likelihood ratio function for the nonparametric component is constructed, and a nonparametric version Wilks' phenomenons is proved. Compared with methods based on normal approximations, the empirical likelihood does not require consistent estimators for the asymptotic variance and bias. A simulation study is undertaken to assess the finite sample performance of the proposed confidence regions. 相似文献
17.
In this article, we study the construction of confidence intervals for regression parameters in a linear model under linear process errors by using the blockwise technique. It is shown that the blockwise empirical likelihood (EL) ratio statistic is asymptotically χ2-type distributed. The result is used to obtain EL based confidence regions for regression parameters. The finite-sample performance of the method is evaluated through a simulation study. 相似文献
18.
This paper considers statistical inference for the partially linear additive models, which are useful extensions of additive models and partially linear models. We focus on the case where some covariates are measured with additive errors, and the response variable is sometimes missing. We propose a profile least-squares estimator for the parametric component and show that the resulting estimator is asymptotically normal. To construct a confidence region for the parametric component, we also propose an empirical-likelihood-based statistic, which is shown to have a chi-squared distribution asymptotically. Furthermore, a simulation study is conducted to illustrate the performance of the proposed methods. 相似文献
19.
Empirical likelihood-based inference for the nonparametric components in additive partially linear models is investigated. An empirical likelihood approach to construct the confidence intervals of the nonparametric components is proposed when the linear covariate is measured with and without errors. We show that the proposed empirical log-likelihood ratio is asymptotically standard chi-squared without requiring the undersmoothing of the nonparametric components. Then, it can be directly used to construct the confidence intervals for the nonparametric functions. A simulation study indicates that, compared with a normal approximation-based approach, the proposed method works better in terms of coverage probabilities and widths of the pointwise confidence intervals. 相似文献
20.
利用经验似然方法,讨论缺失数据下广义线性模型中参数的置信域问题,得到了对数经验似然比统计量的渐近分布为标准卡方分布;给出参数的一些估计量及其渐近分布,利用数据模拟解释了所提出的方法。 相似文献