首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In this paper, when a jointly Type-II censored sample arising from k independent exponential populations is available, the conditional MLEs of the k exponential mean parameters are derived. The moment generating functions and the exact densities of these MLEs are obtained using which exact confidence intervals are developed for the parameters. Moreover, approximate confidence intervals based on the asymptotic normality of the MLEs and credible confidence regions from a Bayesian viewpoint are also discussed. An empirical comparison of the exact, approximate, bootstrap, and Bayesian intervals is also made in terms of coverage probabilities. Finally, an example is presented in order to illustrate all the methods of inference developed here.  相似文献   

2.
Fast and robust bootstrap   总被引:1,自引:0,他引:1  
In this paper we review recent developments on a bootstrap method for robust estimators which is computationally faster and more resistant to outliers than the classical bootstrap. This fast and robust bootstrap method is, under reasonable regularity conditions, asymptotically consistent. We describe the method in general and then consider its application to perform inference based on robust estimators for the linear regression and multivariate location-scatter models. In particular, we study confidence and prediction intervals and tests of hypotheses for linear regression models, inference for location-scatter parameters and principal components, and classification error estimation for discriminant analysis.  相似文献   

3.
The single bootstrap is implemented by using a saddlepoint approximation to determine estimates for the survival and hazard functions of first-passage times in complicated semi-Markov processes. The double bootstrap is also implemented by resampling saddlepoint inversions and provides BCa confidence bands for these functions. Confidence intervals for the mean and variance of first-passage times are easily computed. A new characterization of the asymptotic hazard rate for survival times is presented and leads to an indirect method for constructing its bootstrap confidence interval.  相似文献   

4.
Comparative lifetime experiments are of great importance when the interest is in ascertaining the relative merits of two competing products with regard to their reliability. In this article, we consider two exponential populations and when joint progressive Type-II censoring is implemented on the two samples. We then derive the moment generating functions and the exact distributions of the maximum likelihood estimators (MLEs) of the mean lifetimes of the two exponential populations under such a joint progressive Type-II censoring. We then discuss the exact lower confidence bounds, exact confidence intervals, and simultaneous confidence regions. Next, we discuss the corresponding approximate results based on the asymptotic normality of the MLEs as well as those based on the Bayesian method. All these confidence intervals and regions are then compared by means of Monte Carlo simulations with those obtained from bootstrap methods. Finally, an illustrative example is presented in order to illustrate all the methods of inference discussed here.  相似文献   

5.
Comparative lifetime experiments are of great importance when the interest is in ascertaining the relative merits of k competing products with regard to their reliability. In this paper, when a joint progressively Type-II censored sample arising from k independent exponential populations is available, the conditional MLEs of the k exponential mean parameters are derived. Their conditional moment generating functions and exact densities are obtained, using which exact confidence intervals are developed for the parameters. Moreover, approximate confidence intervals based on the asymptotic normality of the MLEs and credible confidence regions from a Bayesian viewpoint are discussed. An empirical evaluation of the exact, approximate, bootstrap, and Bayesian intervals is also made in terms of coverage probabilities and average widths. Finally, an example is presented in order to illustrate all the methods of inference developed here.  相似文献   

6.
We consider the issue of performing accurate small sample inference in beta autoregressive moving average model, which is useful for modeling and forecasting continuous variables that assume values in the interval (0,?1). The inferences based on conditional maximum likelihood estimation have good asymptotic properties, but their performances in small samples may be poor. This way, we propose bootstrap bias corrections of the point estimators and different bootstrap strategies for confidence interval improvements. Our Monte Carlo simulations show that finite sample inference based on bootstrap corrections is much more reliable than the usual inferences. We also presented an empirical application.  相似文献   

7.
The recently developed subsampling methodology has been shown to be valid for the construction of large-sample confidence regions for a general unknown parameter 9 under very minimal conditions. Nevertheless, in some specific cases—e.g. in the case of the sample mean of i.i.d. data—it has been noted that the subsampling distribution estimator underperforms as compared to alternative estimators such as the bootstrap or the asymptotic normal distribution (with estimated variance). In the present report we introduce a (partially) symmetrized.  相似文献   

8.
The purpose of this note is to derive simple testing procedures for ANOVA under heteroscedasticity by a single approach that are equivalent to the prior art in the literature obtained by the Parametric Bootstrap and the Generalized Fiducial approach. By similar approach, researchers are encouraged to derive generalized tests in other applications, as alternative to parametric bootstrap tests and fiducial tests, including ANCOVA and MANOVA under heteroscedasticity, especially in Mixed Model applications, where the bootstrap approach fails.  相似文献   

9.
One of the indicators for evaluating the capability of a process is the process capability index. In this article, bootstrap confidence intervals of the generalized process capability index (GPCI) proposed by Maiti et al. are studied through simulation, when the underlying distributions are Lindley and Power Lindley distributions. The maximum likelihood method is used to estimate the parameters of the models. Three bootstrap confidence intervals namely, standard bootstrap (SB), percentile bootstrap (PB), and bias-corrected percentile bootstrap (BCPB) are considered for obtaining confidence intervals of GPCI. A Monte Carlo simulation has been used to investigate the estimated coverage probabilities and average width of the bootstrap confidence intervals. Simulation results show that the estimated coverage probabilities of the percentile bootstrap confidence interval and the bias-corrected percentile bootstrap confidence interval get closer to the nominal confidence level than those of the standard bootstrap confidence interval. Finally, three real datasets are analyzed for illustrative purposes.  相似文献   

10.
We propose a simple hybrid method which makes use of both saddlepoint and importance sampling techniques to approximate the bootstrap tail probability of an M-estimator. The method does not rely on explicit formula of the Lugannani-Rice type, and is computationally more efficient than both uniform bootstrap sampling and importance resampling suggested in earlier literature. The method is also applied to construct confidence intervals for smooth functions of M-estimands.  相似文献   

11.
Standard algorithms for the construction of iterated bootstrap confidence intervals are computationally very demanding, requiring nested levels of bootstrap resampling. We propose an alternative approach to constructing double bootstrap confidence intervals that involves replacing the inner level of resampling by an analytical approximation. This approximation is based on saddlepoint methods and a tail probability approximation of DiCiccio and Martin (1991). Our technique significantly reduces the computational expense of iterated bootstrap calculations. A formal algorithm for the construction of our approximate iterated bootstrap confidence intervals is presented, and some crucial practical issues arising in its implementation are discussed. Our procedure is illustrated in the case of constructing confidence intervals for ratios of means using both real and simulated data. We repeat an experiment of Schenker (1985) involving the construction of bootstrap confidence intervals for a variance and demonstrate that our technique makes feasible the construction of accurate bootstrap confidence intervals in that context. Finally, we investigate the use of our technique in a more complex setting, that of constructing confidence intervals for a correlation coefficient.  相似文献   

12.
This research is dedicated to the study of periodic characteristics of periodically correlated time series such as seasonal means, seasonal variances and autocovariance functions. Two bootstrap methods are used: the extension of the usual Moving Block Bootstrap (EMBB) and the Generalised Seasonal Block Bootstrap (GSBB). The first approach is proposed, because the usual Moving Block Bootstrap does not preserve the periodic structure contained in the data and cannot be applied for the considered problems. For the aforementioned periodic characteristics the bootstrap estimators are introduced and consistency of the EMBB in all cases is obtained. Moreover, the GSBB consistency results for seasonal variances and autocovariance function are presented. Additionally, the bootstrap consistency of both considered techniques for smooth functions of the parameters of interest is obtained. Finally, the simultaneous bootstrap confidence intervals are constructed. A simulation study to compare their actual coverage probabilities is provided. A real data example is presented.  相似文献   

13.
We focus on the construction of confidence corridors for multivariate nonparametric generalized quantile regression functions. This construction is based on asymptotic results for the maximal deviation between a suitable nonparametric estimator and the true function of interest, which follow after a series of approximation steps including a Bahadur representation, a new strong approximation theorem, and exponential tail inequalities for Gaussian random fields. As a byproduct we also obtain multivariate confidence corridors for the regression function in the classical mean regression. To deal with the problem of slowly decreasing error in coverage probability of the asymptotic confidence corridors, which results in meager coverage for small sample sizes, a simple bootstrap procedure is designed based on the leading term of the Bahadur representation. The finite-sample properties of both procedures are investigated by means of a simulation study and it is demonstrated that the bootstrap procedure considerably outperforms the asymptotic bands in terms of coverage accuracy. Finally, the bootstrap confidence corridors are used to study the efficacy of the National Supported Work Demonstration, which is a randomized employment enhancement program launched in the 1970s. This article has supplementary materials online.  相似文献   

14.
We construct bootstrap confidence intervals for smoothing spline estimates based on Gaussian data, and penalized likelihood smoothing spline estimates based on data from .exponential families. Several vari- ations of bootstrap confidence intervals are considered and compared. We find that the commonly used ootstrap percentile intervals are inferior to the T intervals and to intervals based on bootstrap estimation of mean squared errors. The best variations of the bootstrap confidence intervals behave similar to the well known Bayesian confidence intervals. These bootstrap confidence intervals have an average coverage probability across the function being estimated, as opposed to a pointwise property.  相似文献   

15.
This paper focuses on a novel method of developing one-sample confidence bands for survival functions from right censored data. The approach is model-based, relying on a parametric model for the conditional expectation of the censoring indicator given the observed minimum, and derives its strength from easy access to a good-fitting model among a plethora of choices available for binary response data. The substantive methodological contribution is in exploiting a semiparametric estimator of the survival function to produce improved simultaneous confidence bands. To obtain critical values for computing the confidence bands, a two-stage bootstrap approach that combines the classical bootstrap with the more recent model-based regeneration of censoring indicators is proposed and a justification of its asymptotic validity is also provided. Several different confidence bands are studied using the proposed approach. Numerical studies, including robustness of the proposed bands to misspecification, are carried out to check efficacy. The method is illustrated using two lung cancer data sets.  相似文献   

16.
Eunju Hwang 《Statistics》2017,51(4):844-861
This paper studies the stationary bootstrap applicability for realized covariations of high frequency asynchronous financial data. The stationary bootstrap method, which is characterized by a block-bootstrap with random block length, is applied to estimate the integrated covariations. The bootstrap realized covariance, bootstrap realized regression coefficient and bootstrap realized correlation coefficient are proposed, and the validity of the stationary bootstrapping for them is established both for large sample and for finite sample. Consistencies of bootstrap distributions are established, which provide us valid stationary bootstrap confidence intervals. The bootstrap confidence intervals do not require a consistent estimator of a nuisance parameter arising from nonsynchronous unequally spaced sampling while those based on a normal asymptotic theory require a consistent estimator. A Monte-Carlo comparison reveals that the proposed stationary bootstrap confidence intervals have better coverage probabilities than those based on normal approximation.  相似文献   

17.
A bootstrap procedure is proposed for testing whether an observed Markov chain is actually an independent process, based on the observed transition probability matrix. The results of simulations showing the power and size of the bootstrap test are presented. The asymptotic distribution of the non-unit eigenvalues is given under the null hypothesis.  相似文献   

18.
This article deals with the bootstrap as an alternative method to construct confidence intervals for the hyperparameters of structural models. The bootstrap procedure considered is the classical nonparametric bootstrap in the residuals of the fitted model using a well-known approach. The performance of this procedure is empirically obtained through Monte Carlo simulations implemented in Ox. Asymptotic and percentile bootstrap confidence intervals for the hyperparameters are built and compared by means of the coverage percentages. The results are similar but the bootstrap procedure is better for small sample sizes. The methods are applied to a real time series and confidence intervals are built for the hyperparameters.  相似文献   

19.
Balanced Confidence Regions Based on Tukey's Depth and the Bootstrap   总被引:1,自引:0,他引:1  
We propose and study the bootstrap confidence regions for multivariate parameters based on Tukey's depth. The bootstrap is based on the normalized or Studentized statistic formed from an independent and identically distributed random sample obtained from some unknown distribution in R q . The bootstrap points are deleted on the basis of Tukey's depth until the desired confidence level is reached. The proposed confidence regions are shown to be second order balanced in the context discussed by Beran. We also study the asymptotic consistency of Tukey's depth-based bootstrap confidence regions. The applicability of the method proposed is demonstrated in a simulation study.  相似文献   

20.
The authors study the application of the bootstrap to a class of estimators which converge at a nonstandard rate to a nonstandard distribution. They provide a theoretical framework to study its asymptotic behaviour. A simulation study shows that in the case of an estimator such as Chernoff's estimator of the mode, usually the basic bootstrap confidence intervals drastically undercover while the percentile bootstrap intervals overcover. This is a rare instance where basic and percentile confidence intervals, which have exactly the same length, behave in a very different way. In the case of Chernoff's estimator, if the distribution is symmetric, it is possible to bootstrap from a smooth symmetric estimator of the distribution for which the basic bootstrap confidence intervals will have the claimed coverage probability while the percentile bootstrap interval will have an asymptotic coverage of 1!  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号