首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A design d is called D-optimal if it maximizes det(M d ) and is called MS-optimal if it maximizes tr(M d ) and minimizes tr[(M d )2] among those which maximize tr(M d ), where M d stands for the information matrix produced from d under a given model. In this paper, we establish a lower bound for tr[(M d )2] with respect to a main effects model, where d is an s 1×s 2×···×s m levels asymmetric orthogonal array of strength at least 1. Nonisomorphic asymmetrical MS-optimal orthogonal arrays of strength 1 with N=6, 8 and 12 runs are also presented.  相似文献   

2.
This paper deals with an empirical Bayes testing problem for the mean lifetimes of exponential distributions with unequal sample sizes. We study a method to construct empirical Bayes tests {δ* nl + 1,n } n = 1 for the sequence of the testing problems. The asymptotic optimality of {δ* nl + 1,n } n = 1 is studied. It is shown that the sequence of empirical Bayes tests {δ* nl + 1,n } n = 1 is asymptotically optimal, and its associated sequence of regrets converges to zero at a rate (ln n)4M?1/n, where M is an upper bound of sample sizes.  相似文献   

3.
The problem considered is that of finding D-optimal design for the estimation of covariate parameters and the treatment and block contrasts in a block design set up in the presence of non stochastic controllable covariates, when N = 2(mod 4), N being the total number of observations. It is clear that when N ≠ 0 (mod 4), it is not possible to find designs attaining minimum variance for the estimated covariate parameters. Conditions for D-optimum designs for the estimation of covariate parameters were established when each of the covariates belongs to the interval [?1, 1]. Some constructions of D-optimal design have been provided for symmetric balanced incomplete block design (SBIBD) with parameters b = v, r = k = v ? 1, λ =v ? 2 when k = 2 (mod 4) and b is an odd integer.  相似文献   

4.
ABSTRACT

Consider k(≥ 2) independent exponential populations Π1, Π2, …, Π k , having the common unknown location parameter μ ∈ (?∞, ∞) (also called the guarantee time) and unknown scale parameters σ1, σ2, …σ k , respectively (also called the remaining mean lifetimes after the completion of guarantee times), σ i  > 0, i = 1, 2, …, k. Assume that the correct ordering between σ1, σ2, …, σ k is not known apriori and let σ[i], i = 1, 2, …, k, denote the ith smallest of σ j s, so that σ[1] ≤ σ[2] ··· ≤ σ[k]. Then Θ i  = μ + σ i is the mean lifetime of Π i , i = 1, 2, …, k. Let Θ[1] ≤ Θ[2] ··· ≤ Θ[k] denote the ranked values of the Θ j s, so that Θ[i] = μ + σ[i], i = 1, 2, …, k, and let Π(i) denote the unknown population associated with the ith smallest mean lifetime Θ[i] = μ + σ[i], i = 1, 2, …, k. Based on independent random samples from the k populations, we propose a selection procedure for the goal of selecting the population having the longest mean lifetime Θ[k] (called the “best” population), under the subset selection formulation. Tables for the implementation of the proposed selection procedure are provided. It is established that the proposed subset selection procedure is monotone for a general k (≥ 2). For k = 2, we consider the loss measured by the size of the selected subset and establish that the proposed subset selection procedure is minimax among selection procedures that satisfy a certain probability requirement (called the P*-condition) for the inclusion of the best population in the selected subset.  相似文献   

5.
《随机性模型》2013,29(4):467-482
Abstract

In this paper, we show that an arbitrary tree structured quasi‐birth–death (QBD) Markov chain can be embedded in a tree‐like QBD process with a special structure. Moreover, we present an algebraic proof that applying the natural fixed point iteration (FPI) to the nonlinear matrix equation V = B + ∑ s=1 d U s (I ? V)?1 D s that solves the tree‐like QBD process, is equivalent to the more complicated iterative algorithm presented by Yeung and Alfa (1996).  相似文献   

6.
If the number of runs in a (mixed-level) orthogonal array of strength 2 is specified, what numbers of levels and factors are possible? The collection of possible sets of parameters for orthogonal arrays with N runs has a natural lattice structure, induced by the “expansive replacement” construction method. In particular the dual atoms in this lattice are the most important parameter sets, since any other parameter set for an N-run orthogonal array can be constructed from them. To get a sense for the number of dual atoms, and to begin to understand the lattice as a function of N, we investigate the height and the size of the lattice. It is shown that the height is at most ⌊c(N−1)⌋, where c=1.4039…, and that there is an infinite sequence of values of N for which this bound is attained. On the other hand, the number of nodes in the lattice is bounded above by a superpolynomial function of N (and superpolynomial growth does occur for certain sequences of values of N). Using a new construction based on “mixed spreads”, all parameter sets with 64 runs are determined. Four of these 64-run orthogonal arrays appear to be new.  相似文献   

7.
A batch of M items is inspected for defectives. Suppose there are d defective items in the batch. Let d 0 be a given standard used to evaluate the quality of the population where 0 < d 0 < M. The problem of testing H 0: d < d 0 versus H 1: d ≥ d 0 is considered. It is assumed that past observations are available when the current testing problem is considered. Accordingly, the empirical Bayes approach is employed. By using information obtained from the past data, an empirical Bayes two-stage testing procedure is developed. The associated asymptotic optimality is investigated. It is proved that the rate of convergence of the empirical Bayes two-stage testing procedure is of order O (exp(? c? n)), for some constant c? > 0, where n is the number of past observations at hand.  相似文献   

8.
Thermal, viscoelastic and mechanical properties of polyphenylene sulfide (PPS) were optimized as a function of extrusion and injection molding parameters. For this purpose, design of experiments approach utilizing Taguchi's L27 (37) orthogonal arrays was used. Effect of the parameters on desired properties was determined using the analysis of variance. Differential scanning calorimeter (DSC) tests were performed for the analysis of thermal properties such as melting temperature (Tm) and melting enthalpy (ΔHM). Dynamic mechanical analysis (DMA) tests were performed for the analysis of viscoelastic properties such as damping factor (tan?δ) and glass transition temperature (Tg). Tensile tests were performed for the analysis of mechanical properties such as tensile strength and modulus. With optimized process parameters, verification DSC, DMA and tensile tests were performed for thermal, viscoelastic and mechanical properties, respectively. The Taguchi method showed that ‘barrel temperature’ and its level of ‘340°C’ were seen to be the most effective parameter and its level; respectively. It was suggested that PPS can be reinforced for further improvement after optimized thermal, viscoelastic and mechanical properties.  相似文献   

9.
We study the behavior of bivariate empirical copula process 𝔾 n (·, ·) on pavements [0, k n /n]2 of [0, 1]2, where k n is a sequence of positive constants fulfilling some conditions. We provide a upper bound for the strong approximation of 𝔾 n (·, ·) by a Gaussian process when k n /n↘γ as n → ∞, where 0 ≤ γ ≤1.  相似文献   

10.
Let X 1 and X 2 be two independent random variables from normal populations Π1, Π2 with different unknown location parameters θ1 and θ2, respectively and common known scale parameter σ. Let X (2) = max (X 1, X 2) and X (1) = min (X 1, X 2). We consider the problem of estimating the location parameter θ M (or θ J ) of the selected population under the reflected normal loss function. We obtain minimax estimators of θ M and θ J . Also, we provide sufficient conditions for the inadmissibility of invariant estimators of θ M and θ J .  相似文献   

11.
The median absolute deviation (MAD) is known to be the M-estimator of scale with minimum gross errors sensitivity (GES) when the error distribution is known to be symmetric and strongly unimodal. The problem considered here is to find the Fisher consistent M-estimator with minimum GES when the error distribution is symmetric but not necessarily unimodal. Under some general conditions, the score function χ corresponding to the minimizing M-estimator has the form χ(x) = ?1 when |x| < a; χ(x) = c when a < |x| < b; χ(x) = 1 when |x| > b. An example is given in which the M-estimator with minimum GES does not correspond to the MAD.  相似文献   

12.
Let X 1, X 2,…, X k be k (≥2) independent random variables from gamma populations Π1, Π2,…, Π k with common known shape parameter α and unknown scale parameter θ i , i = 1,2,…,k, respectively. Let X (i) denotes the ith order statistics of X 1,X 2,…,X k . Suppose the population corresponding to largest X (k) (or the smallest X (1)) observation is selected. We consider the problem of estimating the scale parameter θ M (or θ J ) of the selected population under the entropy loss function. For k ≥ 2, we obtain the Unique Minimum Risk Unbiased (UMRU) estimator of θ M (and θ J ). For k = 2, we derive the class of all linear admissible estimators of the form cX (2) (and cX (1)) and show that the UMRU estimator of θ M is inadmissible. The results are extended to some subclass of exponential family.  相似文献   

13.
Abstract

Through simulation and regression, we study the alternative distribution of the likelihood ratio test in which the null hypothesis postulates that the data are from a normal distribution after a restricted Box–Cox transformation and the alternative hypothesis postulates that they are from a mixture of two normals after a restricted (possibly different) Box–Cox transformation. The number of observations in the sample is called N. The standardized distance between components (after transformation) is D = (μ2 ? μ1)/σ, where μ1 and μ2 are the component means and σ2 is their common variance. One component contains the fraction π of observed, and the other 1 ? π. The simulation results demonstrate a dependence of power on the mixing proportion, with power decreasing as the mixing proportion differs from 0.5. The alternative distribution appears to be a non-central chi-squared with approximately 2.48 + 10N ?0.75 degrees of freedom and non-centrality parameter 0.174N(D ? 1.4)2 × [π(1 ? π)]. At least 900 observations are needed to have power 95% for a 5% test when D = 2. For fixed values of D, power, and significance level, substantially more observations are necessary when π ≥ 0.90 or π ≤ 0.10. We give the estimated powers for the alternatives studied and a table of sample sizes needed for 50%, 80%, 90%, and 95% power.  相似文献   

14.
In this paper, by considering a (3n+1) -dimensional random vector (X0, XT, YT, ZT)T having a multivariate elliptical distribution, we derive the exact joint distribution of (X0, aTX(n), bTY[n], cTZ[n])T, where a, b, c∈?n, X(n)=(X(1), …, X(n))T, X(1)<···<X(n), is the vector of order statistics arising from X, and Y[n]=(Y[1], …, Y[n])T and Z[n]=(Z[1], …, Z[n])T denote the vectors of concomitants corresponding to X(n) ((Y[r], Z[r])T, for r=1, …, n, is the vector of bivariate concomitants corresponding to X(r)). We then present an alternate approach for the derivation of the exact joint distribution of (X0, X(r), Y[r], Z[r])T, for r=1, …, n. We show that these joint distributions can be expressed as mixtures of four-variate unified skew-elliptical distributions and these mixture forms facilitate the prediction of X(r), say, based on the concomitants Y[r] and Z[r]. Finally, we illustrate the usefulness of our results by a real data.  相似文献   

15.
An obvious strategy for obtaining a Doptimal foldover design for p factors at two levels each in 2N runs is to fold a Doptimal main effects plan. We show that this strategy works except when N = 4t + 2 and s is even In that case there are two different classes of D-optimal main effects plans with N runs that have the same determinant. However folding them gives two different values foi the D-optimality criteiion One set of designs is D-optimal The other is not.  相似文献   

16.
Let X1X2,.be i.i.d. random variables and let Un= (n r)-1S?(n,r) h (Xi1,., Xir,) be a U-statistic with EUn= v, v unknown. Assume that g(X1) =E[h(X1,.,Xr) - v |X1]has a strictly positive variance s?2. Further, let a be such that φ(a) - φ(-a) =α for fixed α, 0 < α < 1, where φ is the standard normal d.f., and let S2n be the Jackknife estimator of n Var Un. Consider the stopping times N(d)= min {n: S2n: + n-12a-2},d > 0, and a confidence interval for v of length 2d,of the form In,d= [Un,-d, Un + d]. We assume that Var Un is unknown, and hence, no fixed sample size method is available for finding a confidence interval for v of prescribed width 2d and prescribed coverage probability α Turning to a sequential procedure, let IN(d),d be a sequence of sequential confidence intervals for v. The asymptotic consistency of this procedure, i.e. limd → 0P(v ∈ IN(d),d)=α follows from Sproule (1969). In this paper, the rate at which |P(v ∈ IN(d),d) converges to α is investigated. We obtain that |P(v ∈ IN(d),d) - α| = 0 (d1/2-(1+k)/2(1+m)), d → 0, where K = max {0,4 - m}, under the condition that E|h(X1, Xr)|m < ∞m > 2. This improves and extends recent results of Ghosh & DasGupta (1980) and Mukhopadhyay (1981).  相似文献   

17.
The local convergence rate of a multivariate density estimators based on the certain delta-sequence is studied. In contrast to known results, the conditions on the density are formulated in terms of the modulus of continuity. The main contribution of this study is relaxing the corresponding smoothing conditions in terms of arbitrary modulus of continuity type majorant. In particular, when the density f ∈ L p (R d ) satisfies Lipschitz condition of order γ = 1 at x, the rate of convergency contains terms with logarithm, which is the best possible convergency rate.  相似文献   

18.
In this article, we consider a partially linear single-index model Y = g(Z τθ0) + X τβ0 + ? when the covariate X may be missing at random. We propose weighted estimators for the unknown parametric and nonparametric part by applying weighted estimating equations. We establish normality of the estimators of the parameters and asymptotic expansion for the estimator of the nonparametric part when the selection probabilities are unknown. Simulation studies are also conducted to illustrate the finite sample properties of these estimators.  相似文献   

19.
Consider k independent random samples with different sample sizes such that the ith sample comes from the cumulative distribution function (cdf) F i  = 1 ? (1 ? F)α i , where α i is a known positive constant and F is an absolutely continuous cdf. Also, suppose that we have observed the maximum and minimum of the first k samples. This article shows how one can construct the nonparametric prediction intervals for the order statistics of the future samples on the basis of these information. Three schemes are studied and in each case exact expressions for the prediction coefficients of prediction intervals are derived. Numerical computations are given for illustrating the results. Also, a comparison study is done while the complete samples are available.  相似文献   

20.
The paper discusses D-optimal axial designs for the additive quadratic and cubic mixture models σ1≤i≤qixi + βiix2i) and σ1≤i≤qixi + βiix2i + βiiix3i), where xi≥ 0, x1 + . . . + xq = 1. For the quadratic model, a saturated symmetric axial design is used, in which support points are of the form (x1, . . . , xq) = [1 ? (q?1)δi, δi, . . . , δi], where i = 1, 2 and 0 ≤δ2 <δ1 ≤ 1/(q ?1). It is proved that when 3 ≤q≤ 6, the above design is D-optimal if δ2 = 0 and δ1 = 1/(q?1), and when q≥ 7 it is D-optimal if δ2 = 0 and δ1 = [5q?1 ? (9q2?10q + 1)1/2]/(4q2). Similar results exist for the cubic model, with support points of the form (x1, . . . , xq) = [1 ? (q?1)δi, δi, . . . , δi], where i = 1, 2, 3 and 0 = δ3 <δ2 < δ1 ≤1/(q?1). The saturated D-optimal axial design and D-optimal design for the quadratic model are compared in terms of their efficiency and uniformity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号