首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 343 毫秒
1.
ABSTRACT

We introduce a new parsimonious bimodal distribution, referred to as the bimodal skew-symmetric Normal (BSSN) distribution, which is potentially effective in capturing bimodality, excess kurtosis, and skewness. Explicit expressions for the moment-generating function, mean, variance, skewness, and excess kurtosis were derived. The shape properties of the proposed distribution were investigated in regard to skewness, kurtosis, and bimodality. Maximum likelihood estimation was considered and an expression for the observed information matrix was provided. Illustrative examples using medical and financial data as well as simulated data from a mixture of normal distributions were worked.  相似文献   

2.
Skewed and fat-tailed distributions frequently occur in many applications. Models proposed to deal with skewness and kurtosis may be difficult to treat because the density function cannot usually be written in a closed form and the moments might not exist. The log-Dagum distribution is a flexible and simple model obtained by a logarithmic transformation of the Dagum random variable. In this paper, some characteristics of the model are illustrated and the estimation of the parameters is considered. An application is given with the purpose of modeling kurtosis and skewness that mark the financial return distribution.   相似文献   

3.
Abstract

Statistical distributions are very useful in describing and predicting real world phenomena. In many applied areas there is a clear need for the extended forms of the well-known distributions. Generally, the new distributions are more flexible to model real data that present a high degree of skewness and kurtosis. The choice of the best-suited statistical distribution for modeling data is very important.

In this article, we proposed an extended generalized Gompertz (EGGo) family of EGGo. Certain statistical properties of EGGo family including distribution shapes, hazard function, skewness, limit behavior, moments and order statistics are discussed. The flexibility of this family is assessed by its application to real data sets and comparison with other competing distributions. The maximum likelihood equations for estimating the parameters based on real data are given. The performances of the estimators such as maximum likelihood estimators, least squares estimators, weighted least squares estimators, Cramer-von-Mises estimators, Anderson-Darling estimators and right tailed Anderson-Darling estimators are discussed. The likelihood ratio test is derived to illustrate that the EGGo distribution is better than other nested models in fitting data set or not. We use R software for simulation in order to perform applications and test the validity of this model.  相似文献   

4.
ABSTRACT

In this article, the kurtosis of the logistic-exponential distribution is analyzed. All the moments of this survival distribution are finite, but do not possess closed-form expressions. The standardized fourth central moment, known as Pearson’s coefficient of kurtosis and often used to describe the kurtosis of a distribution, can thus also not be expressed in closed form for the logistic-exponential distribution. Alternative kurtosis measures are therefore considered, specifically quantile-based measures and the L-kurtosis ratio. It is shown that these kurtosis measures of the logistic-exponential distribution are invariant to the values of the distribution’s single shape parameter and hence skewness invariant.  相似文献   

5.
Abstract

The most commonly studied generalized normal distribution is the well-known skew-normal by Azzalini. In this paper, a new generalized normal distribution is defined and studied. The distribution is unimodal and it can be skewed right or left. The relationships between the parameters and the mean, variance, skewness, and kurtosis are discussed. It is observed that the new distribution has a much wider range of skewness and kurtosis than the skew-normal distribution. The method of maximum likelihood is proposed to estimate the distribution parameters. Two real data sets are applied to illustrate the flexibility of the distribution.  相似文献   

6.
The skew normal distribution of Azzalini (Scand J Stat 12:171–178, 1985) has been found suitable for unimodal density but with some skewness present. Through this article, we introduce a flexible extension of the Azzalini (Scand J Stat 12:171–178, 1985) skew normal distribution based on a symmetric component normal distribution (Gui et al. in J Stat Theory Appl 12(1):55–66, 2013). The proposed model can efficiently capture the bimodality, skewness and kurtosis criteria and heavy-tail property. The paper presents various basic properties of this family of distributions and provides two stochastic representations which are useful for obtaining theoretical properties and to simulate from the distribution. Further, maximum likelihood estimation of the parameters is studied numerically by simulation and the distribution is investigated by carrying out comparative fitting of three real datasets.  相似文献   

7.
ABSTRACT

The generalized extreme value distribution and its particular case, the Gumbel extreme value distribution, are widely applied for extreme value analysis. The Gumbel distribution has certain drawbacks because it is a non-heavy-tailed distribution and is characterized by constant skewness and kurtosis. The generalized extreme value distribution is frequently used in this context because it encompasses the three possible limiting distributions for a normalized maximum of infinite samples of independent and identically distributed observations. However, the generalized extreme value distribution might not be a suitable model when each observed maximum does not come from a large number of observations. Hence, other forms of generalizations of the Gumbel distribution might be preferable. Our goal is to collect in the present literature the distributions that contain the Gumbel distribution embedded in them and to identify those that have flexible skewness and kurtosis, are heavy-tailed and could be competitive with the generalized extreme value distribution. The generalizations of the Gumbel distribution are described and compared using an application to a wind speed data set and Monte Carlo simulations. We show that some distributions suffer from overparameterization and coincide with other generalized Gumbel distributions with a smaller number of parameters, that is, are non-identifiable. Our study suggests that the generalized extreme value distribution and a mixture of two extreme value distributions should be considered in practical applications.  相似文献   

8.
ABSTRACT

In this study, a renewal-reward process with a discrete interference of chance is constructed and considered. Under weak conditions, the ergodicity of the process X(t) is proved and exact formulas for the ergodic distribution and its moments are found. Within some assumptions for the discrete interference of chance in general form, two-term asymptotic expansions for all moments of the ergodic distribution are obtained. Additionally, kurtosis coefficient, skewness coefficient, and coefficient of variation of the ergodic distribution are computed. As a special case, a semi-Markovian inventory model of type (s, S) is investigated.  相似文献   

9.
In this article, we describe a new approach to compare the power of different tests for normality. This approach provides the researcher with a practical tool for evaluating which test at their disposal is the most appropriate for their sampling problem. Using the Johnson systems of distribution, we estimate the power of a test for normality for any mean, variance, skewness, and kurtosis. Using this characterization and an innovative graphical representation, we validate our method by comparing three well-known tests for normality: the Pearson χ2 test, the Kolmogorov–Smirnov test, and the D'Agostino–Pearson K 2 test. We obtain such comparison for a broad range of skewness, kurtosis, and sample sizes. We demonstrate that the D'Agostino–Pearson test gives greater power than the others against most of the alternative distributions and at most sample sizes. We also find that the Pearson χ2 test gives greater power than Kolmogorov–Smirnov against most of the alternative distributions for sample sizes between 18 and 330.  相似文献   

10.
The skew t distribution is a flexible parametric family to fit data, because it includes parameters that let us regulate skewness and kurtosis. A problem with this distribution is that, for moderate sample sizes, the maximum likelihood estimator of the shape parameter is infinite with positive probability. In order to try to solve this problem, Sartori (2006) has proposed using a modified score function as an estimating equation for the shape parameter. In this note we prove that the resulting modified maximum likelihood estimator is always finite, considering the degrees of freedom as known and greater than or equal to 2.  相似文献   

11.
ABSTRACT

In this article, main characteristics of a generalized Gumbel (GG) distribution are derived. Parameter estimation with method of moments, maximum likelihood, and Bayesian approaches are demonstrated. Due to the ranges of its skewness and kurtosis, it is satisfactory for fitting a wide variety of datasets. Also, it can be used to model block maxima or minima data due to its close connection with the standard Gumbel distribution. It is demonstrated that the GG distribution fits more accurately than both of the standard Gumbel and generalized extreme value distributions to block maxima data under specific conditions.  相似文献   

12.
ABSTRACT

The Lindley distribution is an important distribution for analysing the stress–strength reliability models and lifetime data. In many ways, the Lindley distribution is a better model than that based on the exponential distribution. Order statistics arise naturally in many of such applications. In this paper, we derive the exact explicit expressions for the single, double (product), triple and quadruple moments of order statistics from the Lindley distribution. Then, we use these moments to obtain the best linear unbiased estimates (BLUEs) of the location and scale parameters based on Type-II right-censored samples. Next, we use these results to determine the mean, variance, and coefficients of skewness and kurtosis of some certain linear functions of order statistics to develop Edgeworth approximate confidence intervals of the location and scale Lindley parameters. In addition, we carry out some numerical illustrations through Monte Carlo simulations to show the usefulness of the findings. Finally, we apply the findings of the paper to some real data set.  相似文献   

13.
Abstract

Two recurrence relations with respect to sample size are given concerning the joint distribution of skewness and kurtosis of random observations from a normal population: one between the probability density functions and the other between the product moments. As a consequence, the latter yields a recurrence formula for the moments of sample kurtosis. The exact moments of Jarque-Bera statistic is also given.  相似文献   

14.
Abstract

This paper develops a skewed extension of the type III generalized logistic distribution and presents the analytical equations for the computation of its moments, cumulative probabilities and quantile values. It is demonstrated through an example that the distribution provides an excellent fit to data characterized by skewness and excess kurtosis.  相似文献   

15.
In this paper we discuss an extended form of the logistic distribution and refer to it as the reversed generalized logistic distribution. We study some moment properties, and derive exact and explicit formulas for the mean, median, mode, variance, coefficients of skewness and kurtosis, and percentage points of this distribution. In addition, we study its limiting distributions as the shape parameter tends to zero or infinity. We also discuss some possible applications in bioassays through logistic regression approach.  相似文献   

16.
ABSTRACT

This paper studies the asymptotic distribution of the largest eigenvalue of the sample covariance matrix. The multivariate distribution for the population is assumed to be elliptical with finite kurtosis 3κ. An expression as an expectation is obtained for the distribution function of the largest eigenvalue regardless of the multiplicity, m, of the population's largest eigenvalue. The asymptotic distribution function and density function are evaluated numerically for m = 2,3,4,5. The bootstrap of the average of the m largest eigenvalues is shown to be consistent for any underlying distribution with finite fourth-order cumulants.  相似文献   

17.
Ali İ. Genç 《Statistics》2013,47(3):613-625
In this work, we generalize the Birnbaum–Saunders distribution using the generalized t distribution alternatively to the normal distribution. The newly defined family is positively skewed and contains distributions with different kurtosis and skewness. We study its properties and special cases and demonstrate its use on some real data sets considering the maximum-likelihood estimation procedure.  相似文献   

18.
The importance of the normal distribution for fitting continuous data is well known. However, in many practical situations data distribution departs from normality. For example, the sample skewness and the sample kurtosis are far away from 0 and 3, respectively, which are nice properties of normal distributions. So, it is important to have formal tests of normality against any alternative. D'Agostino et al. [A suggestion for using powerful and informative tests of normality, Am. Statist. 44 (1990), pp. 316–321] review four procedures Z 2(g 1), Z 2(g 2), D and K 2 for testing departure from normality. The first two of these procedures are tests of normality against departure due to skewness and kurtosis, respectively. The other two tests are omnibus tests. An alternative to the normal distribution is a class of skew-normal distributions (see [A. Azzalini, A class of distributions which includes the normal ones, Scand. J. Statist. 12 (1985), pp. 171–178]). In this paper, we obtain a score test (W) and a likelihood ratio test (LR) of goodness of fit of the normal regression model against the skew-normal family of regression models. It turns out that the score test is based on the sample skewness and is of very simple form. The performance of these six procedures, in terms of size and power, are compared using simulations. The level properties of the three statistics LR, W and Z 2(g 1) are similar and close to the nominal level for moderate to large sample sizes. Also, their power properties are similar for small departure from normality due to skewness (γ1≤0.4). Of these, the score test statistic has a very simple form and computationally much simpler than the other two statistics. The LR statistic, in general, has highest power, although it is computationally much complex as it requires estimates of the parameters under the normal model as well as those under the skew-normal model. So, the score test may be used to test for normality against small departure from normality due to skewness. Otherwise, the likelihood ratio statistic LR should be used as it detects general departure from normality (due to both skewness and kurtosis) with, in general, largest power.  相似文献   

19.
Abstract

A new symmetric heavy-tailed distribution, namely gamma mixture of generalized error distribution is defined by scaling generalized error distribution with gamma distribution, its probability density function, k-moment, skewness and kurtosis are derived. After tedious calculation, we also give the Fisher information matrix, moment estimators and maximum likelihood estimators for the parameters of gamma mixture of generalized error distribution. In order to evaluate the effectiveness of the point estimators and the stability of Fisher information matrix, extensive simulation experiments are carried out in three groups of parameters. Additionally, the new distribution is applied to Apple Inc. stock (AAPL) data and compared with normal distribution, F-S skewed standardized t distribution and generalized error distribution. It is found that the new distribution has better fitting effect on the data under the Akaike information criterion (AIC). To a certain extent, our results enrich the probability distribution theory and develop the scale mixture distribution, which will provide help and reference for financial data analysis.  相似文献   

20.
Abstract

By using the idea of principal component analysis, we propose an approach to applying the classical skewness and kurtosis statistics for detecting univariate normality to testing high-dimensional normality. High-dimensional sample data are projected to the principal component directions on which the classical skewness and kurtosis statistics can be constructed. The theory of spherical distributions is employed to derive the null distributions of the combined statistics constructed from the principal component directions. A Monte Carlo study is carried out to demonstrate the performance of the statistics on controlling type I error rates and a simple power comparison with some existing statistics. The effectiveness of the proposed statistics is illustrated by two real-data examples.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号