首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
High-dimensional data with a group structure of variables arise always in many contemporary statistical modelling problems. Heavy-tailed errors or outliers in the response often exist in these data. We consider robust group selection for partially linear models when the number of covariates can be larger than the sample size. The non-convex penalty function is applied to achieve both goals of variable selection and estimation in the linear part simultaneously, and we use polynomial splines to estimate the nonparametric component. Under regular conditions, we show that the robust estimator enjoys the oracle property. Simulation studies demonstrate the performance of the proposed method with samples of moderate size. The analysis of a real example illustrates that our method works well.  相似文献   

2.
This paper focuses on the variable selection for semiparametric varying coefficient partially linear model when the covariates are measured with additive errors and the response is missing. An adaptive lasso estimator and the smoothly clipped absolute deviation estimator as a comparison for the parameters are proposed. With the proper selection of regularization parameter, the sampling properties including the consistency of the two procedures and the oracle properties are established. Furthermore, the algorithms and corresponding standard error formulas are discussed. A simulation study is carried out to assess the finite sample performance of the proposed methods.  相似文献   

3.
Abstract

In this article, we consider a panel data partially linear regression model with fixed effect and non parametric time trend function. The data can be dependent cross individuals through linear regressor and error components. Unlike the methods using non parametric smoothing technique, a difference-based method is proposed to estimate linear regression coefficients of the model to avoid bandwidth selection. Here the difference technique is employed to eliminate the non parametric function effect, not the fixed effects, on linear regressor coefficient estimation totally. Therefore, a more efficient estimator for parametric part is anticipated, which is shown to be true by the simulation results. For the non parametric component, the polynomial spline technique is implemented. The asymptotic properties of estimators for parametric and non parametric parts are presented. We also show how to select informative ones from a number of covariates in the linear part by using smoothly clipped absolute deviation-penalized estimators on a difference-based least-squares objective function, and the resulting estimators perform asymptotically as well as the oracle procedure in terms of selecting the correct model.  相似文献   

4.
Abstract

In this article, we study the variable selection and estimation for linear regression models with missing covariates. The proposed estimation method is almost as efficient as the popular least-squares-based estimation method for normal random errors and empirically shown to be much more efficient and robust with respect to heavy tailed errors or outliers in the responses and covariates. To achieve sparsity, a variable selection procedure based on SCAD is proposed to conduct estimation and variable selection simultaneously. The procedure is shown to possess the oracle property. To deal with the covariates missing, we consider the inverse probability weighted estimators for the linear model when the selection probability is known or unknown. It is shown that the estimator by using estimated selection probability has a smaller asymptotic variance than that with true selection probability, thus is more efficient. Therefore, the important Horvitz-Thompson property is verified for penalized rank estimator with the covariates missing in the linear model. Some numerical examples are provided to demonstrate the performance of the estimators.  相似文献   

5.
As a useful extension of partially linear models and varying coefficient models, the partially linear varying coefficient model is useful in statistical modelling. This paper considers statistical inference for the semiparametric model when the covariates in the linear part are measured with additive error and some additional linear restrictions on the parametric component are available. We propose a restricted modified profile least-squares estimator for the parametric component, and prove the asymptotic normality of the proposed estimator. To test hypotheses on the parametric component, we propose a test statistic based on the difference between the corrected residual sums of squares under the null and alterative hypotheses, and show that its limiting distribution is a weighted sum of independent chi-square distributions. We also develop an adjusted test statistic, which has an asymptotically standard chi-squared distribution. Some simulation studies are conducted to illustrate our approaches.  相似文献   

6.
Varying-coefficient partially linear models provide a useful tools for modeling of covariate effects on the response variable in regression. One key question in varying-coefficient partially linear models is the choice of model structure, that is, how to decide which covariates have linear effect and which have non linear effect. In this article, we propose a profile method for identifying the covariates with linear effect or non linear effect. Our proposed method is a penalized regression approach based on group minimax concave penalty. Under suitable conditions, we show that the proposed method can correctly determine which covariates have a linear effect and which do not with high probability. The convergence rate of the linear estimator is established as well as the asymptotical normality. The performance of the proposed method is evaluated through a simulation study which supports our theoretical results.  相似文献   

7.
This article studies the absolute penalized convex function estimator in sparse and high-dimensional additive hazards model. Under such model, we assume that the failure time data are interval-censored and the number of time-dependent covariates can be larger than the sample size. We establish oracle inequalities based on some natural extensions of the compatibility and cone invertibility factors of the Hessian matrix at the true parameters in the model. Some similar inequalities based on an extension of the restricted eigenvalue are also established. Under mild conditions, we prove that the compatibility and cone invertibility factors and the restricted eigenvalues are bounded from below by positive constants for time-dependent covariates.  相似文献   

8.
We propose a penalized quantile regression for partially linear varying coefficient (VC) model with longitudinal data to select relevant non parametric and parametric components simultaneously. Selection consistency and oracle property are established. Furthermore, if linear part and VC part are unknown, we propose a new unified method, which can do three types of selections: separation of varying and constant effects, selection of relevant variables, and it can be carried out conveniently in one step. Consistency in the three types of selections and oracle property in estimation are established as well. Simulation studies and real data analysis also confirm our method.  相似文献   

9.
This paper studies the Bridge estimator for a high-dimensional panel data model with heterogeneous varying coefficients, where the random errors are assumed to be serially correlated and cross-sectionally dependent. We establish oracle efficiency and the asymptotic distribution of the Bridge estimator, when the number of covariates increases to infinity with the sample size in both dimensions. A BIC-type criterion is also provided for tuning parameter selection. We further generalise the marginal Bridge estimator for our model to asymptotically correctly identify the covariates with zero coefficients even when the number of covariates is greater than the sample size under a partial orthogonality condition. The finite sample performance of the proposed estimator is demonstrated by simulated data examples, and an empirical application with the US stock dataset is also provided.  相似文献   

10.
High-dimensional sparse modeling with censored survival data is of great practical importance, as exemplified by applications in high-throughput genomic data analysis. In this paper, we propose a class of regularization methods, integrating both the penalized empirical likelihood and pseudoscore approaches, for variable selection and estimation in sparse and high-dimensional additive hazards regression models. When the number of covariates grows with the sample size, we establish asymptotic properties of the resulting estimator and the oracle property of the proposed method. It is shown that the proposed estimator is more efficient than that obtained from the non-concave penalized likelihood approach in the literature. Based on a penalized empirical likelihood ratio statistic, we further develop a nonparametric likelihood approach for testing the linear hypothesis of regression coefficients and constructing confidence regions consequently. Simulation studies are carried out to evaluate the performance of the proposed methodology and also two real data sets are analyzed.  相似文献   

11.
The Nadaraya–Watson estimator is among the most studied nonparametric regression methods. A classical result is that its convergence rate depends on the number of covariates and deteriorates quickly as the dimension grows. This underscores the “curse of dimensionality” and has limited its use in high‐dimensional settings. In this paper, however, we show that the Nadaraya–Watson estimator has an oracle property such that when the true regression function is single‐ or multi‐index, it discovers the low‐rank dependence structure between the response and the covariates, mitigating the curse of dimensionality. Specifically, we prove that, using K‐fold cross‐validation and a positive‐semidefinite bandwidth matrix, the Nadaraya–Watson estimator has a convergence rate that depends on the number of indices rather than on the number of covariates. This result follows by allowing the bandwidths to diverge to infinity rather than restricting them all to converge to zero at certain rates, as in previous theoretical studies.  相似文献   

12.
We propose the penalized empirical likelihood method via bridge estimator in Cox's proportional hazard model for parameter estimation and variable selection. Under reasonable conditions, we show that penalized empirical likelihood in Cox's proportional hazard model has oracle property. A penalized empirical likelihood ratio for the vector of regression coefficients is defined and its limiting distribution is a chi-square distributions. The advantage of penalized empirical likelihood as a nonparametric likelihood approach is illustrated in testing hypothesis and constructing confidence sets. The method is illustrated by extensive simulation studies and a real example.  相似文献   

13.
The group folded concave penalization problems have been shown to process the satisfactory oracle property theoretically. However, it remains unknown whether the optimization algorithm for solving the resulting nonconvex problem can find such oracle solution among multiple local solutions. In this paper, we extend the well-known local linear approximation (LLA) algorithm to solve the group folded concave penalization problem for the linear models. We prove that, with the group LASSO estimator as the initial value, the two-step LLA solution converges to the oracle estimator with overwhelming probability, and thus closing the theoretical gap. The results are high-dimensional which allow the group number to grow exponentially, the true relevant groups and the true maximum group size to grow polynomially. Numerical studies are also conducted to show the merits of the LLA procedure.  相似文献   

14.
Lasso is popularly used for variable selection in recent years. In this paper, lasso-type penalty functions including lasso and adaptive lasso are employed in simultaneously variable selection and parameter estimation for covariate-adjusted linear model, where the predictors and response cannot be observed directly and distorted by some observable covariate through some unknown multiplicative smooth functions. Estimation procedures are proposed and some asymptotic properties are obtained under some mild conditions. It deserves noting that under appropriate conditions, the adaptive lasso estimator correctly select covariates with nonzero coefficients with probability converging to one and that the estimators of nonzero coefficients have the same asymptotic distribution that they would have if the zero coefficients were known in advance, i.e. the adaptive lasso estimator has the oracle property in the sense of Fan and Li [6]. Simulation studies are carried out to examine its performance in finite sample situations and the Boston Housing data is analyzed for illustration.  相似文献   

15.
Kai B  Li R  Zou H 《Annals of statistics》2011,39(1):305-332
The complexity of semiparametric models poses new challenges to statistical inference and model selection that frequently arise from real applications. In this work, we propose new estimation and variable selection procedures for the semiparametric varying-coefficient partially linear model. We first study quantile regression estimates for the nonparametric varying-coefficient functions and the parametric regression coefficients. To achieve nice efficiency properties, we further develop a semiparametric composite quantile regression procedure. We establish the asymptotic normality of proposed estimators for both the parametric and nonparametric parts and show that the estimators achieve the best convergence rate. Moreover, we show that the proposed method is much more efficient than the least-squares-based method for many non-normal errors and that it only loses a small amount of efficiency for normal errors. In addition, it is shown that the loss in efficiency is at most 11.1% for estimating varying coefficient functions and is no greater than 13.6% for estimating parametric components. To achieve sparsity with high-dimensional covariates, we propose adaptive penalization methods for variable selection in the semiparametric varying-coefficient partially linear model and prove that the methods possess the oracle property. Extensive Monte Carlo simulation studies are conducted to examine the finite-sample performance of the proposed procedures. Finally, we apply the new methods to analyze the plasma beta-carotene level data.  相似文献   

16.
In this paper, we study the problem of estimation and variable selection for generalised partially linear single-index models based on quasi-likelihood, extending existing studies on variable selection for partially linear single-index models to binary and count responses. To take into account the unit norm constraint of the index parameter, we use the ‘delete-one-component’ approach. The asymptotic normality of the estimates is demonstrated. Furthermore, the smoothly clipped absolute deviation penalty is added for variable selection of parameters both in the nonparametric part and the parametric part, and the oracle property of the variable selection procedure is shown. Finally, some simulation studies are carried out to illustrate the finite sample performance.  相似文献   

17.
This paper considers statistical inference for the partially linear additive models, which are useful extensions of additive models and partially linear models. We focus on the case where some covariates are measured with additive errors, and the response variable is sometimes missing. We propose a profile least-squares estimator for the parametric component and show that the resulting estimator is asymptotically normal. To construct a confidence region for the parametric component, we also propose an empirical-likelihood-based statistic, which is shown to have a chi-squared distribution asymptotically. Furthermore, a simulation study is conducted to illustrate the performance of the proposed methods.  相似文献   

18.
Case-cohort designs are commonly used in large epidemiological studies to reduce the cost associated with covariate measurement. In many such studies the number of covariates is very large. An efficient variable selection method is needed for case-cohort studies where the covariates are only observed in a subset of the sample. Current literature on this topic has been focused on the proportional hazards model. However, in many studies the additive hazards model is preferred over the proportional hazards model either because the proportional hazards assumption is violated or the additive hazards model provides more relevent information to the research question. Motivated by one such study, the Atherosclerosis Risk in Communities (ARIC) study, we investigate the properties of a regularized variable selection procedure in stratified case-cohort design under an additive hazards model with a diverging number of parameters. We establish the consistency and asymptotic normality of the penalized estimator and prove its oracle property. Simulation studies are conducted to assess the finite sample performance of the proposed method with a modified cross-validation tuning parameter selection methods. We apply the variable selection procedure to the ARIC study to demonstrate its practical use.  相似文献   

19.
This article considers the adaptive lasso procedure for the accelerated failure time model with multiple covariates based on weighted least squares method, which uses Kaplan-Meier weights to account for censoring. The adaptive lasso method can complete the variable selection and model estimation simultaneously. Under some mild conditions, the estimator is shown to have sparse and oracle properties. We use Bayesian Information Criterion (BIC) for tuning parameter selection, and a bootstrap variance approach for standard error. Simulation studies and two real data examples are carried out to investigate the performance of the proposed method.  相似文献   

20.
Quantile regression provides a flexible platform for evaluating covariate effects on different segments of the conditional distribution of response. As the effects of covariates may change with quantile level, contemporaneously examining a spectrum of quantiles is expected to have a better capacity to identify variables with either partial or full effects on the response distribution, as compared to focusing on a single quantile. Under this motivation, we study a general adaptively weighted LASSO penalization strategy in the quantile regression setting, where a continuum of quantile index is considered and coefficients are allowed to vary with quantile index. We establish the oracle properties of the resulting estimator of coefficient function. Furthermore, we formally investigate a Bayesian information criterion (BIC)-type uniform tuning parameter selector and show that it can ensure consistent model selection. Our numerical studies confirm the theoretical findings and illustrate an application of the new variable selection procedure.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号