首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
For frequency counts, the situation of extra zeros often arises in biomedical applications. This is demonstrated with count data from a dental epidemiological study in Belo Horizonte (the Belo Horizonte caries prevention study) which evaluated various programmes for reducing caries. Extra zeros, however, violate the variance–mean relationship of the Poisson error structure. This extra-Poisson variation can easily be explained by a special mixture model, the zero-inflated Poisson (ZIP) model. On the basis of the ZIP model, a graphical device is presented which not only summarizes the mixing distribution but also provides visual information about the overall mean. This device can be exploited to evaluate and compare various groups. Ways are discussed to include covariates and to develop an extension of the conventional Poisson regression. Finally, a method to evaluate intervention effects on the basis of the ZIP regression model is described and applied to the data of the Belo Horizonte caries prevention study.  相似文献   

2.
Count data with excess zeros often occurs in areas such as public health, epidemiology, psychology, sociology, engineering, and agriculture. Zero-inflated Poisson (ZIP) regression and zero-inflated negative binomial (ZINB) regression are useful for modeling such data, but because of hierarchical study design or the data collection procedure, zero-inflation and correlation may occur simultaneously. To overcome these challenges ZIP or ZINB may still be used. In this paper, multilevel ZINB regression is used to overcome these problems. The method of parameter estimation is an expectation-maximization algorithm in conjunction with the penalized likelihood and restricted maximum likelihood estimates for variance components. Alternative modeling strategies, namely the ZIP distribution are also considered. An application of the proposed model is shown on decayed, missing, and filled teeth of children aged 12 years old.  相似文献   

3.
While excess zeros are often thought to cause data over-dispersion (i.e. when the variance exceeds the mean), this implication is not absolute. One should instead consider a flexible class of distributions that can address data dispersion along with excess zeros. This work develops a zero-inflated sum-of-Conway-Maxwell-Poissons (ZISCMP) regression as a flexible analysis tool to model count data that express significant data dispersion and contain excess zeros. This class of models contains several special case zero-inflated regressions, including zero-inflated Poisson (ZIP), zero-inflated negative binomial (ZINB), zero-inflated binomial (ZIB), and the zero-inflated Conway-Maxwell-Poisson (ZICMP). Through simulated and real data examples, we demonstrate class flexibility and usefulness. We further utilize it to analyze shark species data from Australia's Great Barrier Reef to assess the environmental impact of human action on the number of various species of sharks.  相似文献   

4.
Count data with excess zeros are common in many biomedical and public health applications. The zero-inflated Poisson (ZIP) regression model has been widely used in practice to analyze such data. In this paper, we extend the classical ZIP regression framework to model count time series with excess zeros. A Markov regression model is presented and developed, and the partial likelihood is employed for statistical inference. Partial likelihood inference has been successfully applied in modeling time series where the conditional distribution of the response lies within the exponential family. Extending this approach to ZIP time series poses methodological and theoretical challenges, since the ZIP distribution is a mixture and therefore lies outside the exponential family. In the partial likelihood framework, we develop an EM algorithm to compute the maximum partial likelihood estimator (MPLE). We establish the asymptotic theory of the MPLE under mild regularity conditions and investigate its finite sample behavior in a simulation study. The performances of different partial-likelihood based model selection criteria are compared in the presence of model misspecification. Finally, we present an epidemiological application to illustrate the proposed methodology.  相似文献   

5.
In this paper, we briefly overview different zero-inflated probability distributions. We compare the performance of the estimates of Poisson, Generalized Poisson, ZIP, ZIGP and ZINB models through Mean square error (MSE), bias and Standard error (SE) when the samples are generated from ZIP distribution. We propose a new estimator referred to as probability estimator (PE) of inflation parameter of ZIP distribution based on moment estimator (ME) of the mean parameter and compare its performance with ME and maximum likelihood estimator (MLE) through a simulation study. We use the PE along with ME and MLE to fit ZIP distribution to various zero-inflated datasets and observe that the results do not differ significantly. We recommend using PE in place of MLE since it is easy to calculate and the simulation study in this paper demonstrates that the PE performs as good as MLE irrespective of the sample size.  相似文献   

6.
Multivariate zero-inflated Poisson (ZIP) distributions are important tools for modelling and analysing correlated count data with extra zeros. Unfortunately, existing multivariate ZIP distributions consider only the overall zero-inflation while the component zero-inflation is not well addressed. This paper proposes a flexible multivariate ZIP distribution, called the multivariate component ZIP distribution, in which both the overall and component zero-inflations are taken into account. Likelihood-based inference procedures including the calculation of maximum likelihood estimates of parameters in the model without and with covariates are provided. Simulation studies indicate that the performance of the proposed methods on the multivariate component ZIP model is satisfactory. The Australia health care utilisation data set is analysed to demonstrate that the new distribution is more appropriate than the existing multivariate ZIP distributions.  相似文献   

7.
Count responses with structural zeros are very common in medical and psychosocial research, especially in alcohol and HIV research, and the zero-inflated Poisson (ZIP) and zero-inflated negative binomial models are widely used for modeling such outcomes. However, as alcohol drinking outcomes such as days of drinkings are counts within a given period, their distributions are bounded above by an upper limit (total days in the period) and thus inherently follow a binomial or zero-inflated binomial (ZIB) distribution, rather than a Poisson or ZIP distribution, in the presence of structural zeros. In this paper, we develop a new semiparametric approach for modeling ZIB-like count responses for cross-sectional as well as longitudinal data. We illustrate this approach with both simulated and real study data.  相似文献   

8.
The zero-inflated Poisson (ZIP) distribution is widely used for modeling a count data set when the frequency of zeros is higher than the one expected under the Poisson distribution. There are many methods for making inferences for the inflation parameter in the ZIP models, e.g. the methods for testing Poisson (the inflation parameter is zero) versus ZIP distribution (the inflation parameter is positive). Most of these methods are based on the maximum likelihood estimators which do not have an explicit expression. However, the estimators which are obtained by the method of moments are powerful enough, easy to obtain and implement. In this paper, we propose an approach based on the method of moments for making inferences about the inflation parameter in the ZIP distribution. Our method is also compared to some recent methods via a simulation study and it is illustrated by an example.  相似文献   

9.
The Zero-inflated Poisson distribution (ZIP) is used to model the defects in processes with a large number of zeros. We propose a control charting procedure using a combination of two cumulative sum (CUSUM) charts to detect increases in the parameters of ZIP process, one is a conforming run length (CRL) CUSUM chart and another is a zero truncated Poisson (ZTP) CUSUM chart. The control limits of the control charts are obtained using both Markov chain-based methods and simulations. Simulation experiments show that the proposed method outperforms an existing method. Finally, a real example is presented.  相似文献   

10.
We consider a linear regression model when some independent variables are unobservable, but proxy variables are available instead of them. We derive the distribution and density functions of a pre-test estimator of the error variance after a pre-test for the null hypothesis that the coefficients for the unobservable variables are zeros. Based on the density function, we show that when the critical value of the pre-test is unity, the coverage probability in the interval estimation of the error variance is maximum.  相似文献   

11.
Lesion count observed on brain magnetic resonance imaging scan is a common end point in phase 2 clinical trials evaluating therapeutic treatment in relapsing remitting multiple sclerosis (MS). This paper compares the performances of Poisson, zero‐inflated poisson (ZIP), negative binomial (NB), and zero‐inflated NB (ZINB) mixed‐effects regression models in fitting lesion count data in a clinical trial evaluating the efficacy and safety of fingolimod in comparison with placebo, in MS. The NB and ZINB models prove to be superior to the Poisson and ZIP models. We discuss the advantages and limitations of zero‐inflated models in the context of MS treatment. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

12.
Overdispersion due to a large proportion of zero observations in data sets is a common occurrence in many applications of many fields of research; we consider such scenarios in count panel (longitudinal) data. A well-known and widely implemented technique for handling such data is that of random effects modeling, which addresses the serial correlation inherent in panel data, as well as overdispersion. To deal with the excess zeros, a zero-inflated Poisson distribution has come to be canonical, which relaxes the equal mean-variance specification of a traditional Poisson model and allows for the larger variance characteristic of overdispersed data. A natural proposal then to approach count panel data with overdispersion due to excess zeros is to combine these two methodologies, deriving a likelihood from the resulting conditional probability. In performing simulation studies, we find that this approach in fact poses problems of identifiability. In this article, we construct and explain in full detail why a model obtained from the marriage of two classical and well-established techniques is unidentifiable and provide results of simulation studies demonstrating this effect. A discussion on alternative methodologies to resolve the problem is provided in the conclusion.  相似文献   

13.
When the manufacturing process is well monitored, occurrence of nondefects would be a frequent event in sampling inspection. The appropriate probability distribution of the number of defects is a zero-inflated Poisson (ZIP) distribution. In this article, determination of single sampling plans (SSPs) by attributes using unity values is considered, when the number of defects follows a ZIP distribution. The operating characteristic (OC) function of the sampling plan is derived. Plan parameters are obtained for some sets of values of (p1, α, p2, β). Numerical illustrations are given to describe the determination of SSP under ZIP distribution and to study its performance in comparison with Poisson SSP.  相似文献   

14.
Medical and public health research often involve the analysis of repeated or longitudinal count data that exhibit excess zeros such as the number of yearly doctor visits by a group of individuals over a number of years. Zero-inflated Poisson (ZIP) regression models can be used to account for excess zeros in count data. We propose an extension of the ZIP model that is appropriate for longitudinal data. Our extension includes a non stationary, observation-driven time series model based correlation structure. We discuss estimation of the model parameters and the inefficiency of the estimators when the correlation structure is mis-specified. The model's application to the analysis of health care utilization data is also discussed.  相似文献   

15.
The zero-inflated negative binomial (ZINB) model is used to account for commonly occurring overdispersion detected in data that are initially analyzed under the zero-inflated Poisson (ZIP) model. Tests for overdispersion (Wald test, likelihood ratio test [LRT], and score test) based on ZINB model for use in ZIP regression models have been developed. Due to similarity to the ZINB model, we consider the zero-inflated generalized Poisson (ZIGP) model as an alternate model for overdispersed zero-inflated count data. The score test has an advantage over the LRT and the Wald test in that the score test only requires that the parameter of interest be estimated under the null hypothesis. This paper proposes score tests for overdispersion based on the ZIGP model and illustrates that the derived score statistics are exactly the same as the score statistics under the ZINB model. A simulation study indicates the proposed score statistics are preferred to other tests for higher empirical power. In practice, based on the approximate mean–variance relationship in the data, the ZINB or ZIGP model can be considered, and a formal score test based on asymptotic standard normal distribution can be employed for assessing overdispersion in the ZIP model. We provide an example to illustrate the procedures for data analysis.  相似文献   

16.
Distribution function estimation plays a significant role of foundation in statistics since the population distribution is always involved in statistical inference and is usually unknown. In this paper, we consider the estimation of the distribution function of a response variable Y with missing responses in the regression problems. It is proved that the augmented inverse probability weighted estimator converges weakly to a zero mean Gaussian process. A augmented inverse probability weighted empirical log-likelihood function is also defined. It is shown that the empirical log-likelihood converges weakly to the square of a Gaussian process with mean zero and variance one. We apply these results to the construction of Gaussian process approximation based confidence bands and empirical likelihood based confidence bands of the distribution function of Y. A simulation is conducted to evaluate the confidence bands.  相似文献   

17.
We extend the family of Poisson and negative binomial models to derive the joint distribution of clustered count outcomes with extra zeros. Two random effects models are formulated. The first model assumes a shared random effects term between the conditional probability of perfect zeros and the conditional mean of the imperfect state. The second formulation relaxes the shared random effects assumption by relating the conditional probability of perfect zeros and the conditional mean of the imperfect state to two different but correlated random effects variables. Under the conditional independence and the missing data at random assumption, a direct optimization of the marginal likelihood and an EM algorithm are proposed to fit the proposed models. Our proposed models are fitted to dental caries counts of children under the age of six in the city of Detroit.  相似文献   

18.
The aim of this paper is to include the Two-Sided Power (TSP) distribution in the PERT methodology making use of the advantages that this four-parameter distribution offers. In order to be completely determined, a distribution of this type needs, the same as the beta distribution, a new datum apart from the three usual values a (pessimistic), m (most likely) and b (optimistic). To solve this question, when using the beta distribution in the PERT context, we are looking for the maximum similarity with the normal and so it is required that the distribution has the same variance as the normal or its same kurtosis, giving rise to the constant variance and mesokurtic families, respectively. Nevertheless, while this approach can be only applied to the beta distribution for some values in the range of the standardized mode, in the case of the TSP distribution this methodology leads always to a solution. A detailed analysis comparing the beta and TSP distribution based on their PERT means and variances is presented indicating better results for the second. We are very grateful for the comments and suggestions of two anonymous referees.  相似文献   

19.
The generalized Poisson distribution (GPD), studied by many researchers and containing two parameters θ and λ, has been found to fit very well data sets arising in biological, ecological, social and marketing fields. Consul and Shoukri (1985) have shown that for negative values of λ the GPD gets truncated and the model becomes deficient; however, the truncation error becomes less than 0.0005 if the minimum number of non-zero probability classes ≥ 4 for all values of θ and λ and the GPD model can be safely used in all such cases. The problem of admissible maximum likelihood (ML) estimation when the sample mean is larger than the sample variance is considered in this paper which complements the earlier work of Consul and Shoukri (1984) on the existence of unique ML estimators of θ and λ when the sample mean is smaller than or equal to the sample variance.  相似文献   

20.
Zero-inflated Poisson (ZIP) and zero-inflated negative binomial (ZINB) models are recommended for handling excessive zeros in count data. For various reasons, researchers may not address zero inflation. This paper helps educate researchers on (1) the importance of accounting for zero inflation and (2) the consequences of misspecifying the statistical model. Using simulations, we found that when the zero inflation in the data was ignored, estimation was poor and statistically significant findings were missed. When overdispersion within the zero-inflated data was ignored, poor estimation and inflated Type I errors resulted. Recommendations on when to use the ZINB and ZIP models are provided. In an illustration using a two-step model selection procedure (likelihood ratio test and the Vuong test), the ZIP model was correctly identified only when the distributions had moderate means and sample sizes and did not correctly identify the ZINB model or the zero inflation in the ZIP and ZINB distributions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号