首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
There exist various methods for providing confidence intervals for unknown parameters of interest on the basis of a random sample. Generally, the bounds are derived from a system of non-linear equations. In this article, we present a general solution to obtain an unbiased confidence interval with confidence coefficient 1 ? α in one-parameter exponential families. Also we discuss two Bayesian credible intervals, the highest posterior density (HPD) and relative surprise (RS) credible intervals. Standard criteria like the coverage length and coverage probability are used to assess the performance of the HPD and RS credible intervals. Simulation studies and real data applications are presented for illustrative purposes.  相似文献   

2.
This article studies the construction of a Bayesian confidence interval for the ratio of marginal probabilities in matched-pair designs. Under a Dirichlet prior distribution, the exact posterior distribution of the ratio is derived. The tail confidence interval and the highest posterior density (HPD) interval are studied, and their frequentist performances are investigated by simulation in terms of mean coverage probability and mean expected length of the interval. An advantage of Bayesian confidence interval is that it is always well defined for any data structure and has shorter mean expected width. We also find that the Bayesian tail interval at Jeffreys prior performs as well as or better than the frequentist confidence intervals.  相似文献   

3.
The Behrens‐Fisher problem concerns the inference for the difference between the means of two normal populations whose ratio of variances is unknown. In this situation, Fisher's fiducial interval differs markedly from the Neyman‐Pearson confidence interval. A prior proposed by Jeffreys leads to a credible interval that is equivalent to Fisher's solution but it carries a different interpretation. The authors propose an alternative prior leading to a credible interval whose asymptotic coverage probability matches the frequentist coverage probability more accurately than the interval of Jeffreys. Their simulation results indicate excellent matching even in small samples.  相似文献   

4.
In this paper, we develop a matching prior for the product of means in several normal distributions with unrestricted means and unknown variances. For this problem, properly assigning priors for the product of normal means has been issued because of the presence of nuisance parameters. Matching priors, which are priors matching the posterior probabilities of certain regions with their frequentist coverage probabilities, are commonly used but difficult to derive in this problem. We developed the first order probability matching priors for this problem; however, the developed matching priors are unproper. Thus, we apply an alternative method and derive a matching prior based on a modification of the profile likelihood. Simulation studies show that the derived matching prior performs better than the uniform prior and Jeffreys’ prior in meeting the target coverage probabilities, and meets well the target coverage probabilities even for the small sample sizes. In addition, to evaluate the validity of the proposed matching prior, Bayesian credible interval for the product of normal means using the matching prior is compared to Bayesian credible intervals using the uniform prior and Jeffrey’s prior, and the confidence interval using the method of Yfantis and Flatman.  相似文献   

5.
This article studies the construction of Bayesian confidence interval for the difference of two proportions in the matched-pair design, and applies it to the equiva-lence or non inferiority test. Under the Dirichlet prior distribution, the exact posterior distribution of difference of two proportions is derived. The tail confidence interval and the highest posterior density (HPD) interval are studied, and their frequentist performance are investigated by simulation in terms of the mean coverage probability of interval. Our results suggest to use tail interval at Jeffreys prior for testing equivalence or non inferiority in matched-pair design.  相似文献   

6.
Suppose a prior is specified only on the interest parameter and a posterior distribution, free from nuisance parameters, is considered on the basis of the profile likelihood or an adjusted version thereof. In this setup, we derive higher order asymptotic results on the construction of confidence intervals that have approximately correct posterior as well as frequentist coverage. Apart from meeting both Bayesian and frequentist objectives under prior specification on the interest parameter alone, these results allow a comparison with their counterpart arising when the nuisance parameters are known, and hence provide additional justification for the Cox and Reid adjustment from a Bayesian-cum-frequentist perspective, with regard to neutralization of unknown nuisance parameters.  相似文献   

7.
For normal populations with unequal variances, we develop matching priors and reference priors for a linear combination of the means. Here, we find three second-order matching priors: a highest posterior density (HPD) matching prior, a cumulative distribution function (CDF) matching prior, and a likelihood ratio (LR) matching prior. Furthermore, we show that the reference priors are all first-order matching priors, but that they do not satisfy the second-order matching criterion that establishes the symmetry and the unimodality of the posterior under the developed priors. The results of a simulation indicate that the second-order matching prior outperforms the reference priors in terms of matching the target coverage probabilities, in a frequentist sense. Finally, we compare the Bayesian credible intervals based on the developed priors with the confidence intervals derived from real data.  相似文献   

8.
9.
This paper considers a linear regression model with regression parameter vector β. The parameter of interest is θ= aTβ where a is specified. When, as a first step, a data‐based variable selection (e.g. minimum Akaike information criterion) is used to select a model, it is common statistical practice to then carry out inference about θ, using the same data, based on the (false) assumption that the selected model had been provided a priori. The paper considers a confidence interval for θ with nominal coverage 1 ‐ α constructed on this (false) assumption, and calls this the naive 1 ‐ α confidence interval. The minimum coverage probability of this confidence interval can be calculated for simple variable selection procedures involving only a single variable. However, the kinds of variable selection procedures used in practice are typically much more complicated. For the real‐life data presented in this paper, there are 20 variables each of which is to be either included or not, leading to 220 different models. The coverage probability at any given value of the parameters provides an upper bound on the minimum coverage probability of the naive confidence interval. This paper derives a new Monte Carlo simulation estimator of the coverage probability, which uses conditioning for variance reduction. For these real‐life data, the gain in efficiency of this Monte Carlo simulation due to conditioning ranged from 2 to 6. The paper also presents a simple one‐dimensional search strategy for parameter values at which the coverage probability is relatively small. For these real‐life data, this search leads to parameter values for which the coverage probability of the naive 0.95 confidence interval is 0.79 for variable selection using the Akaike information criterion and 0.70 for variable selection using Bayes information criterion, showing that these confidence intervals are completely inadequate.  相似文献   

10.
This paper compares the Bayesian and frequentist approaches to testing a one-sided hypothesis about a multivariate mean. First, this paper proposes a simple way to assign a Bayesian posterior probability to one-sided hypotheses about a multivariate mean. The approach is to use (almost) the exact posterior probability under the assumption that the data has multivariate normal distribution, under either a conjugate prior in large samples or under a vague Jeffreys prior. This is also approximately the Bayesian posterior probability of the hypothesis based on a suitably flat Dirichlet process prior over an unknown distribution generating the data. Then, the Bayesian approach and a frequentist approach to testing the one-sided hypothesis are compared, with results that show a major difference between Bayesian reasoning and frequentist reasoning. The Bayesian posterior probability can be substantially smaller than the frequentist p-value. A class of example is given where the Bayesian posterior probability is basically 0, while the frequentist p-value is basically 1. The Bayesian posterior probability in these examples seems to be more reasonable. Other drawbacks of the frequentist p-value as a measure of whether the one-sided hypothesis is true are also discussed.  相似文献   

11.
For a normal distribution with known variance, the standard confidence interval of the location parameter is derived from the classical Neyman procedure. When the parameter space is known to be restricted, the standard confidence interval is arguably unsatisfactory. Recent articles have addressed this problem and proposed confidence intervals for the mean of a normal distribution where the parameter space is not less than zero. In this article, we propose a new confidence interval, rp interval, and derive the Bayesian credible interval and likelihood ratio interval for general restricted parameter space. We compare these intervals with the standard interval and the minimax interval. Simulation studies are undertaken to assess the performances of these confidence intervals.  相似文献   

12.
Bootstrap smoothed (bagged) parameter estimators have been proposed as an improvement on estimators found after preliminary data‐based model selection. A result of Efron in 2014 is a very convenient and widely applicable formula for a delta method approximation to the standard deviation of the bootstrap smoothed estimator. This approximation provides an easily computed guide to the accuracy of this estimator. In addition, Efron considered a confidence interval centred on the bootstrap smoothed estimator, with width proportional to the estimate of this approximation to the standard deviation. We evaluate this confidence interval in the scenario of two nested linear regression models, the full model and a simpler model, and a preliminary test of the null hypothesis that the simpler model is correct. We derive computationally convenient expressions for the ideal bootstrap smoothed estimator and the coverage probability and expected length of this confidence interval. In terms of coverage probability, this confidence interval outperforms the post‐model‐selection confidence interval with the same nominal coverage and based on the same preliminary test. We also compare the performance of the confidence interval centred on the bootstrap smoothed estimator, in terms of expected length, to the usual confidence interval, with the same minimum coverage probability, based on the full model.  相似文献   

13.
We study a Bayesian approach to recovering the initial condition for the heat equation from noisy observations of the solution at a later time. We consider a class of prior distributions indexed by a parameter quantifying “smoothness” and show that the corresponding posterior distributions contract around the true parameter at a rate that depends on the smoothness of the true initial condition and the smoothness and scale of the prior. Correct combinations of these characteristics lead to the optimal minimax rate. One type of priors leads to a rate-adaptive Bayesian procedure. The frequentist coverage of credible sets is shown to depend on the combination of the prior and true parameter as well, with smoother priors leading to zero coverage and rougher priors to (extremely) conservative results. In the latter case, credible sets are much larger than frequentist confidence sets, in that the ratio of diameters diverges to infinity. The results are numerically illustrated by a simulated data example.  相似文献   

14.
For a normal model with a conjugate prior, we provide an in-depth examination of the effects of the hyperparameters on the long-run frequentist properties of posterior point and interval estimates. Under an assumed sampling model for the data-generating mechanism, we examine how hyperparameter values affect the mean-squared error (MSE) of posterior means and the true coverage of credible intervals. We develop two types of hyperparameter optimality. MSE optimal hyperparameters minimize the MSE of posterior point estimates. Credible interval optimal hyperparameters result in credible intervals that have a minimum length while still retaining nominal coverage. A poor choice of hyperparameters has a worse consequence on the credible interval coverage than on the MSE of posterior point estimates. We give an example to demonstrate how our results can be used to evaluate the potential consequences of hyperparameter choices.  相似文献   

15.
In this paper, we develop noninformative priors for linear combinations of the means under the normal populations. It turns out that among the reference priors the one-at-a-time reference prior satisfies a second order probability matching criterion. Moreover, the second order probability matching priors match alternative coverage probabilities up to the second order and are also HPD matching priors. Our simulation study indicates that the one-at-a-time reference prior performs better than the other reference priors in terms of matching the target coverage probabilities in a frequentist sense.  相似文献   

16.
Capability indices that qualify process potential and process performance are practical tools for successful quality improvement activities and quality program implementation. Most existing methods to assess process capability were derived on the basis of the traditional frequentist point of view. This paper considers the problem of estimating and testing process capability based on the third-generation capability index C pmk from the Bayesian point of view. We first derive the posterior probability p for the process under investigation is capable. The one-sided credible interval, a Bayesian analog of the classical lower confidence interval, can be obtained to assess process performance. To investigate the effectiveness of the derived results, a series of simulation was undertaken. The results indicate that the performance of the proposed Bayesian approach depends strongly on the value of ξ=(μ?T)/σ. It performs very well with the accurate coverage rate when μ is sufficiently far from T. In those cases, they have the same acceptable performance even though the sample size n is as small as 25.  相似文献   

17.
We formulate Bayesian approaches to the problems of determining the required sample size for Bayesian interval estimators of a predetermined length for a single Poisson rate, for the difference between two Poisson rates, and for the ratio of two Poisson rates. We demonstrate the efficacy of our Bayesian-based sample-size determination method with two real-data quality-control examples and compare the results to frequentist sample-size determination methods.  相似文献   

18.
We derive a computationally convenient formula for the large sample coverage probability of a confidence interval for a scalar parameter of interest following a preliminary hypothesis test that a specified vector parameter takes a given value in a general regression model. Previously, this large sample coverage probability could only be estimated by simulation. Our formula only requires the evaluation, by numerical integration, of either a double or a triple integral, irrespective of the dimension of this specified vector parameter. We illustrate the application of this formula to a confidence interval for the odds ratio of myocardial infarction when the exposure is recent oral contraceptive use, following a preliminary test where two specified interactions in a logistic regression model are zero. For this real‐life data, we compare this large sample coverage probability with the actual coverage probability of this confidence interval, obtained by simulation.  相似文献   

19.
This article deals with the estimation of a fixed population size through capture-mark-recapture method that gives rise to hypergeometric distribution. There are a few well-known and popular point estimators available in the literature, but no good comprehensive comparison is available about their merits. Apart from the available estimators, an empirical Bayes (EB) estimator of the population size is proposed. We compare all the point estimators in terms of relative bias and relative mean squared error. Next, two new interval estimators – (a) an EB highest posterior distribution interval and (b) a frequentist interval estimator based on a parametric bootstrap method, are proposed. The comparison is then carried among the two proposed interval estimators and interval estimators derived from the currently available estimators in terms of coverage probability and average length (AL). Based on comprehensive numerical results, we rank and recommend the point estimators as well as interval estimators for practical use. Finally, a real-life data set for a green treefrog population is used as a demonstration for all the methods discussed.  相似文献   

20.
The paper develops some objective priors for correlation coefficient of the bivariate normal distribution. The criterion used is the asymptotic matching of coverage probabilities of Bayesian credible intervals with the corresponding frequentist coverage probabilities. The paper uses various matching criteria, namely, quantile matching, highest posterior density matching, and matching via inversion of test statistics. Each matching criterion leads to a different prior for the parameter of interest. We evaluate their performance by comparing credible intervals through simulation studies. In addition, inference through several likelihood-based methods have been discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号