共查询到20条相似文献,搜索用时 0 毫秒
1.
In this article, we propose two test statistics for testing the underlying serial correlation in a partially linear single-index model Y = η(Z τα) + X τβ + ? when X is measured with additive error. The proposed test statistics are shown to have asymptotic normal or chi-squared distributions under the null hypothesis of no serial correlation. Monte Carlo experiments are also conducted to illustrate the finite sample performance of the proposed test statistics. The simulation results confirm that these statistics perform satisfactorily in both estimated sizes and powers. 相似文献
2.
3.
In this article, we generalize the partially linear single-index models to the scenario with some endogenous covariates variables. It is well known that the estimators based on the existing methods are often inconsistent because of the endogeneity of covariates. To deal with the endogenous variables, we introduce some auxiliary instrumental variables. A three-stage estimation procedure is proposed for partially linear single-index instrumental variables models. The first stage is to obtain a linear projection of endogenous variables on a set of instrumental variables, the second stage is to estimate the link function by using local linear smoother for given constant parameters, and the last stage is to obtain the estimators of constant parameters based on the estimating equation. Asymptotic normality is established for the proposed estimators. Some simulation studies are undertaken to assess the finite sample performance of the proposed estimation procedure. 相似文献
4.
Chuanhua Wei 《统计学通讯:理论与方法》2013,42(7):1284-1298
This article considers statistical inference for partially linear varying-coefficient models when the responses are missing at random. We propose a profile least-squares estimator for the parametric component with complete-case data and show that the resulting estimator is asymptotically normal. To avoid to estimate the asymptotic covariance in establishing confidence region of the parametric component with the normal-approximation method, we define an empirical likelihood based statistic and show that its limiting distribution is chi-squared distribution. Then, the confidence regions of the parametric component with asymptotically correct coverage probabilities can be constructed by the result. To check the validity of the linear constraints on the parametric component, we construct a modified generalized likelihood ratio test statistic and demonstrate that it follows asymptotically chi-squared distribution under the null hypothesis. Then, we extend the generalized likelihood ratio technique to the context of missing data. Finally, some simulations are conducted to illustrate the proposed methods. 相似文献
5.
This paper considers statistical inference for the partially linear additive models, which are useful extensions of additive models and partially linear models. We focus on the case where some covariates are measured with additive errors, and the response variable is sometimes missing. We propose a profile least-squares estimator for the parametric component and show that the resulting estimator is asymptotically normal. To construct a confidence region for the parametric component, we also propose an empirical-likelihood-based statistic, which is shown to have a chi-squared distribution asymptotically. Furthermore, a simulation study is conducted to illustrate the performance of the proposed methods. 相似文献
6.
Xia Chen 《统计学通讯:理论与方法》2013,42(15):2498-2514
In this article, we consider the application of the empirical likelihood method to a partially linear single-index model. We focus on the case where some covariates are measured with additive errors. It is shown that the empirical log-likelihood ratio at the true parameter converges to the standard chi-square distribution. Simulations show that the proposed confidence region has coverage probability which is closer to the nominal level, as well as narrower than those of normal approximation method. A real data example is given. 相似文献
7.
In this article, the partially linear single-index models are discussed based on smoothing spline and average derivative estimation method. This proposed technique consists of two stages: one is to estimate the vector parameter in the linear part using the smoothing cubic spline method, simultaneously, obtaining the estimator of unknown single-index function; the other is to estimate the single-index coefficients in the single-index part by the using average derivative estimator procedure. Some simulated and real examples are presented to illustrate the performance of this method. 相似文献
8.
Zhensheng Huang 《统计学通讯:模拟与计算》2016,45(7):2638-2656
In this article, we consider whether the empirical likelihood ratio (ELR) test is applicable to testing for serial correlation in the partially linear single-index models (PLSIM) with error-prone linear covariates. It is shown that under the null hypothesis the proposed ELR statistic follows asymptotically a χ2-distribution with the scale constant and the degrees of freedom. A comparison between the ELR and the normal approximation method is also considered. Both simulated and real data examples are used to illustrate our proposed methodology. 相似文献
9.
This article is concerned with partially non linear models when the response variables are missing at random. We examine the empirical likelihood (EL) ratio statistics for unknown parameter in non linear function based on complete-case data, semiparametric regression imputation, and bias-corrected imputation. All the proposed statistics are proven to be asymptotically chi-square distribution under some suitable conditions. Simulation experiments are conducted to compare the finite sample behaviors of the proposed approaches in terms of confidence intervals. It showed that the EL method has advantage compared to the conventional method, and moreover, the imputation technique performs better than the complete-case data. 相似文献
10.
Jie Mao 《统计学通讯:理论与方法》2013,42(17):3119-3140
Semiparametric regression models and estimating covariance functions are very useful in longitudinal study. Unfortunately, challenges arise in estimating the covariance function of longitudinal data collected at irregular time points. In this article, for mean term, a partially linear model is introduced and for covariance structure, a modified Cholesky decomposition approach is proposed to heed the positive-definiteness constraint. We estimate the regression function by using the local linear technique and propose quasi-likelihood estimating equations for both the mean and covariance structures. Moreover, asymptotic normality of the resulting estimators is established. Finally, simulation study and real data analysis are used to illustrate the proposed approach. 相似文献
11.
Motivated by covariate-adjusted regression (CAR) proposed by Sentürk and Müller (2005) and an application problem, in this article we introduce and investigate a covariate-adjusted partially linear regression model (CAPLM), in which both response and predictor vector can only be observed after being distorted by some multiplicative factors, and an additional variable such as age or period is taken into account. Although our model seems to be a special case of covariate-adjusted varying coefficient model (CAVCM) given by Sentürk (2006), the data types of CAPLM and CAVCM are basically different and then the methods for inferring the two models are different. In this article, the estimate method motivated by Cui et al. (2008) is employed to infer the new model. Furthermore, under some mild conditions, the asymptotic normality of estimator for the parametric component is obtained. Combined with the consistent estimate of asymptotic covariance, we obtain confidence intervals for the regression coefficients. Also, some simulations and a real data analysis are made to illustrate the new model and methods. 相似文献
12.
We consider the problem of variable selection in high-dimensional partially linear models with longitudinal data. A variable selection procedure is proposed based on the smooth-threshold generalized estimating equation (SGEE). The proposed procedure automatically eliminates inactive predictors by setting the corresponding parameters to be zero, and simultaneously estimates the nonzero regression coefficients by solving the SGEE. We establish the asymptotic properties in a high-dimensional framework where the number of covariates pn increases as the number of clusters n increases. Extensive Monte Carlo simulation studies are conducted to examine the finite sample performance of the proposed variable selection procedure. 相似文献
13.
14.
《Scandinavian Journal of Statistics》2018,45(1):87-109
In survival analysis, covariate measurements often contain missing observations; ignoring this feature can lead to invalid inference. We propose a class of weighted estimating equations for right‐censored data with missing covariates under semiparametric transformation models. Time‐specific and subject‐specific weights are accommodated in the formulation of the weighted estimating equations. We establish unified results for estimating missingness probabilities that cover both parametric and non‐parametric modelling schemes. To improve estimation efficiency, the weighted estimating equations are augmented by a new set of unbiased estimating equations. The resultant estimator has the so‐called ‘double robustness’ property and is optimal within a class of consistent estimators. 相似文献
15.
《Scandinavian Journal of Statistics》2018,45(2):366-381
Coefficient estimation in linear regression models with missing data is routinely carried out in the mean regression framework. However, the mean regression theory breaks down if the error variance is infinite. In addition, correct specification of the likelihood function for existing imputation approach is often challenging in practice, especially for skewed data. In this paper, we develop a novel composite quantile regression and a weighted quantile average estimation procedure for parameter estimation in linear regression models when some responses are missing at random. Instead of imputing the missing response by randomly drawing from its conditional distribution, we propose to impute both missing and observed responses by their estimated conditional quantiles given the observed data and to use the parametrically estimated propensity scores to weigh check functions that define a regression parameter. Both estimation procedures are resistant to heavy‐tailed errors or outliers in the response and can achieve nice robustness and efficiency. Moreover, we propose adaptive penalization methods to simultaneously select significant variables and estimate unknown parameters. Asymptotic properties of the proposed estimators are carefully investigated. An efficient algorithm is developed for fast implementation of the proposed methodologies. We also discuss a model selection criterion, which is based on an ICQ ‐type statistic, to select the penalty parameters. The performance of the proposed methods is illustrated via simulated and real data sets. 相似文献
16.
《统计学通讯:理论与方法》2013,42(9):1817-1833
Abstract It is known that due to the existence of the nonparametric component, the usual estimators for the parametric component or its function in partially linear regression models are biased. Sometimes this bias is severe. To reduce the bias, we propose two jackknife estimators and compare them with the naive estimator. All three estimators are shown to be asymptotically equivalent and asymptotically normally distributed under some regularity conditions. However, through simulation we demonstrate that the jackknife estimators perform better than the naive estimator in terms of bias when the sample size is small to moderate. To make our results more useful, we also construct consistent estimators of the asymptotic variance, which are robust against heterogeneity of the error variances. 相似文献
17.
Young-Ju Kim 《统计学通讯:模拟与计算》2016,45(7):2577-2585
We consider a semiparametric method based on partial splines for estimating the unknown function and partially linear regression parameters in partially linear single-index models. Three methods—project pursuit regression (PPR), average derivative estimation (ADE), and a boosting method—are considered for estimating the single-index parameters. Simulations revealed that PPR with partial splines was superior in estimating single-index parameters, while the boosting method with partial splines performed no better than PPR and ADE. All three methods performed similarly in estimating the partially linear regression parameters. The relative performances of the methods are also illustrated using a real-world data example. 相似文献
18.
内容提要:对于两个部分线性模型参数部分中模型系数是否相等的检验问题,本文基于比较原假设与备择假设下模型拟合的残差平方和的思想构造了检验统计量,并给出了计算检验p* 值的F分布逼近法。 相似文献
19.
In this article, the partially linear covariate-adjusted regression models are considered, and the penalized least-squares procedure is proposed to simultaneously select variables and estimate the parametric components. The rate of convergence and the asymptotic normality of the resulting estimators are established under some regularization conditions. With the proper choices of the penalty functions and tuning parameters, it is shown that the proposed procedure can be as efficient as the oracle estimators. Some Monte Carlo simulation studies and a real data application are carried out to assess the finite sample performances for the proposed method. 相似文献
20.
As a compromise between parametric regression and nonparametric regression, partially linear models are frequently used in statistical modelling. This article considers statistical inference for this semiparametric model when the linear covariate is measured with additive error and some additional linear restrictions on the parametric component are assumed to hold. We propose a restricted corrected profile least-squares estimator for the parametric component, and study the asymptotic normality of the estimator. To test hypothesis on the parametric component, we construct a Wald test statistic and obtain its limiting distribution. Some simulation studies are conducted to illustrate our approaches. 相似文献