首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
ABSTRACT

M-estimation is a widely used technique for robust statistical inference. In this paper, we study robust partially functional linear regression model in which a scale response variable is explained by a function-valued variable and a finite number of real-valued variables. For the estimation of the regression parameters, which include the infinite dimensional function as well as the slope parameters for the real-valued variables, we use polynomial splines to approximate the slop parameter. The estimation procedure is easy to implement, and it is resistant to heavy-tailederrors or outliers in the response. The asymptotic properties of the proposed estimators are established. Finally, we assess the finite sample performance of the proposed method by Monte Carlo simulation studies.  相似文献   

2.
Abstract

A class of multivariate laws as an extension of univariate Weibull distribution is presented. A well known representation of the asymmetric univariate Laplace distribution is used as the starting point. This new family of distributions exhibits some similarities to the multivariate normal distribution. Properties of this class of distributions are explored including moments, correlations, densities and simulation algorithms. The distribution is applied to model bivariate exchange rate data. The fit of the proposed model seems remarkably good. Parameters are estimated and a bootstrap study performed to assess the accuracy of the estimators.  相似文献   

3.

We introduce some projected integrated empirical processes for testing the equality of two multivariate distributions. The bootstrap is used for determining the approximate critical values. We show that the bootstrap test is consistent. A number-theoretic method is used for efficient computation of the bootstrap critical values. Some simulation results are also given.  相似文献   

4.
Multivariate mixture regression models can be used to investigate the relationships between two or more response variables and a set of predictor variables by taking into consideration unobserved population heterogeneity. It is common to take multivariate normal distributions as mixing components, but this mixing model is sensitive to heavy-tailed errors and outliers. Although normal mixture models can approximate any distribution in principle, the number of components needed to account for heavy-tailed distributions can be very large. Mixture regression models based on the multivariate t distributions can be considered as a robust alternative approach. Missing data are inevitable in many situations and parameter estimates could be biased if the missing values are not handled properly. In this paper, we propose a multivariate t mixture regression model with missing information to model heterogeneity in regression function in the presence of outliers and missing values. Along with the robust parameter estimation, our proposed method can be used for (i) visualization of the partial correlation between response variables across latent classes and heterogeneous regressions, and (ii) outlier detection and robust clustering even under the presence of missing values. We also propose a multivariate t mixture regression model using MM-estimation with missing information that is robust to high-leverage outliers. The proposed methodologies are illustrated through simulation studies and real data analysis.  相似文献   

5.
Abstract

We propose a new multivariate extension of the inverse Gaussian distribution derived from a certain multivariate inverse relationship. First we define a multivariate extension of the inverse relationship between two sets of multivariate distributions, then define a reduced inverse relationship between two multivariate distributions. We derive the multivariate continuous distribution that has the reduced multivariate inverse relationship with a multivariate normal distribution and call it a multivariate inverse Gaussian distribution. This distribution is also characterized as the distribution of the location of a multivariate Brownian motion at some stopping time. The marginal distribution in one direction is the inverse Gaussian distribution, and the conditional distribution in the space perpendicular to this direction is a multivariate normal distribution. Mean, variance, and higher order cumulants are derived from the multivariate inverse relationship with a multivariate normal distribution. Other properties such as reproductivity and infinite divisibility are also given.  相似文献   

6.
This paper considers the three‐parameter family of symmetric unimodal distributions obtained by wrapping the location‐scale extension of Student's t distribution onto the unit circle. The family contains the wrapped normal and wrapped Cauchy distributions as special cases, and can be used to closely approximate the von Mises distribution. In general, the density of the family can only be represented in terms of an infinite summation, but its trigonometric moments are relatively simple expressions involving modified Bessel functions. Point estimation of the parameters is considered, and likelihood‐based methods are used to fit the family of distributions in an illustrative analysis of cross‐bed measurements. The use of the family as a means of approximating the von Mises distribution is investigated in detail, and new efficient algorithms are proposed for the generation of approximate pseudo‐random von Mises variates.  相似文献   

7.
In this paper we have considered type II censored sample from a two parameter Weibull distribution with the known scale parameter. Using the preliminary test estimator of the unknown shape parameter (3 proposed by Pandey (1983), the paper derives a method of finding the approximate prediction limit for the minimum or, more generally,the jth smallest of a set of future observations from the Weibull or even extreme-value distribution  相似文献   

8.
As is the case of many studies, the data collected are limited and an exact value is recorded only if it falls within an interval range. Hence, the responses can be either left, interval or right censored. Linear (and nonlinear) regression models are routinely used to analyze these types of data and are based on normality assumptions for the errors terms. However, those analyzes might not provide robust inference when the normality assumptions are questionable. In this article, we develop a Bayesian framework for censored linear regression models by replacing the Gaussian assumptions for the random errors with scale mixtures of normal (SMN) distributions. The SMN is an attractive class of symmetric heavy-tailed densities that includes the normal, Student-t, Pearson type VII, slash and the contaminated normal distributions, as special cases. Using a Bayesian paradigm, an efficient Markov chain Monte Carlo algorithm is introduced to carry out posterior inference. A new hierarchical prior distribution is suggested for the degrees of freedom parameter in the Student-t distribution. The likelihood function is utilized to compute not only some Bayesian model selection measures but also to develop Bayesian case-deletion influence diagnostics based on the q-divergence measure. The proposed Bayesian methods are implemented in the R package BayesCR. The newly developed procedures are illustrated with applications using real and simulated data.  相似文献   

9.
ABSTRACT

Despite the popularity of the general linear mixed model for data analysis, power and sample size methods and software are not generally available for commonly used test statistics and reference distributions. Statisticians resort to simulations with homegrown and uncertified programs or rough approximations which are misaligned with the data analysis. For a wide range of designs with longitudinal and clustering features, we provide accurate power and sample size approximations for inference about fixed effects in the linear models we call reversible. We show that under widely applicable conditions, the general linear mixed-model Wald test has noncentral distributions equivalent to well-studied multivariate tests. In turn, exact and approximate power and sample size results for the multivariate Hotelling–Lawley test provide exact and approximate power and sample size results for the mixed-model Wald test. The calculations are easily computed with a free, open-source product that requires only a web browser to use. Commercial software can be used for a smaller range of reversible models. Simple approximations allow accounting for modest amounts of missing data. A real-world example illustrates the methods. Sample size results are presented for a multicenter study on pregnancy. The proposed study, an extension of a funded project, has clustering within clinic. Exchangeability among the participants allows averaging across them to remove the clustering structure. The resulting simplified design is a single-level longitudinal study. Multivariate methods for power provide an approximate sample size. All proofs and inputs for the example are in the supplementary materials (available online).  相似文献   

10.
ABSTRACT

Process capability indices measure the ability of a process to provide products that meet certain specifications. Few references deal with the capability of a process characterized by a functional relationship between a response variable and one or more explanatory variables, which is called profile. Specifically, there is not any reference analysing the capability of processes characterized by multivariate nonlinear profiles. In this paper, we propose a method to measure the capability of these processes, based on principal components for multivariate functional data and the concept of functional depth. A simulation study is conducted to assess the performance of the proposed method. An example from the sugar production illustrates the applicability of this approach.  相似文献   

11.
In linear models having near collinear columns of X, ridge and surrogate estimators often are used to mitigate collinearity. A new class of estimators is based on mixtures, either of X and a design minimal in an ordered class or of the Fisher information and a scalar matrix. Comparisons are drawn among choices for the mixing parameter, and the estimators are found to be admissible relative to ordinary least squares. Case studies demonstrate that selected mixture designs are perturbed from the original design to a lesser extent than are those of the surrogate method, while retaining reasonable efficiency characteristics.  相似文献   

12.

When using multiple imputation to form confidence intervals with missing data, Rubin and Schenker (1986) proposed using a t -distribution with approximate degrees-of-freedom which is a function of the number of multiple imputations and the within and between imputation variance. In this t -approximation, Rubin and Schenker assume there are a finite number of multiple imputations, but an infinite number of observations in the sample. We propose a further degrees-of-freedom approximation which is a function of the within and between imputation variance, the number of multiple imputations, and the number of observations in the sample. When the number of observations in the sample is small, our approximate degrees-of-freedom may be more appropriate, as seen in our simulations.  相似文献   

13.
Nonlinear mixed-effects models are very useful to analyze repeated measures data and are used in a variety of applications. Normal distributions for random effects and residual errors are usually assumed, but such assumptions make inferences vulnerable to the presence of outliers. In this work, we introduce an extension of a normal nonlinear mixed-effects model considering a subclass of elliptical contoured distributions for both random effects and residual errors. This elliptical subclass, the scale mixtures of normal (SMN) distributions, includes heavy-tailed multivariate distributions, such as Student-t, the contaminated normal and slash, among others, and represents an interesting alternative to outliers accommodation maintaining the elegance and simplicity of the maximum likelihood theory. We propose an exact estimation procedure to obtain the maximum likelihood estimates of the fixed-effects and variance components, using a stochastic approximation of the EM algorithm. We compare the performance of the normal and the SMN models with two real data sets.  相似文献   

14.
In this article, a new mixed Poisson distribution is introduced. This new distribution is obtained by utilizing mixing process, with Poisson distribution as mixed distribution and Transmuted Exponential as mixing distribution. Distributional properties like unimodality, moments, over-dispersion, infinite divisibility are studied. Three methods viz. Method of moment, Method of moment and proportion, and Maximum-likelihood method are used for parameter estimation. Further, an actuarial application in context of aggregate claim distribution is presented. Finally, to show the applicability and superiority of proposed model, we discuss count data and count regression modeling and compare with some well established models.  相似文献   

15.
ABSTRACT

Simplex regression model is often employed to analyze continuous proportion data in many studies. In this paper, we extend the assumption of a constant dispersion parameter (homogeneity) to varying dispersion parameter (heterogeneity) in Simplex regression model, and present the B-spline to approximate the smoothing unknown function within the Bayesian framework. A hybrid algorithm combining the block Gibbs sampler and the Metropolis-Hastings algorithm is presented for sampling observations from the posterior distribution. The procedures for computing model comparison criteria such as conditional predictive ordinate statistic, deviance information criterion, and averaged mean squared error are presented. Also, we develop a computationally feasible Bayesian case-deletion influence measure based on the Kullback-Leibler divergence. Several simulation studies and a real example are employed to illustrate the proposed methodologies.  相似文献   

16.
In the first part of the paper, we introduce the matrix-variate generalized hyperbolic distribution by mixing the matrix normal distribution with the matrix generalized inverse Gaussian density. The p-dimensional generalized hyperbolic distribution of [Barndorff-Nielsen, O. (1978). Hyperbolic distributions and distributions on hyperbolae. Scand. J. Stat., 5, 151–157], the matrix-T distribution and many well-known distributions are shown to be special cases of the new distribution. Some properties of the distribution are also studied. The second part of the paper deals with the application of the distribution in the Bayesian analysis of the normal multivariate linear model.  相似文献   

17.
Abstract

In analyzing two multivariate normal data sets, the assumption about equality of covariance matrices is usually used as a default for doing subsequence inferences. If this equality doesn’t hold, later inferences will be more complex and usually approximate. If one detects some identical components between two decomposed non equal covariance matrices and uses this extra information, one expects that subsequence inferences can be more accurately performed. For this purpose, in this article we consider some statistical tests about the equality of components of decomposed covariance matrices of two multivariate normal populations. Our emphasis is on the spectral decomposition of these matrices. Hypotheses about the equalities of sizes, shapes, and set of directions as components of these two covariance matrices are tested by the likelihood ratio test (LRT). Some simulation studies are carried out to investigate the accuracy and power of the LRT. Finally, analyses of two real data sets are illustrated.  相似文献   

18.
Abstract

Under the framework of multivariate regular variation, we obtain the asymptotic ratio between the tail distortion risk measure for portfolio loss and the sum of value-at-risk for single loss by a different method from the one in Zhu and Li when the confidence level tends to one. In order to illustrate the derived result, a relevant example is given and the corresponding numerical simulation is also carried out.  相似文献   

19.

Among the most well known estimators of multivariate location and scatter is the Minimum Volume Ellipsoid (MVE). Many algorithms have been proposed to compute it. Most of these attempt merely to approximate as close as possible the exact MVE, but some of them led to the definition of new estimators which maintain the properties of robustness and affine equivariance that make the MVE so attractive. Rousseeuw and van Zomeren (1990) used the <$>(p+1)<$>- subset estimator which was modified by Croux and Haesbroeck (1997) to give rise to the averaged <$>(p+1)<$>- subset estimator . This note shows by means of simulations that the averaged <$>(p+1)<$>-subset estimator outperforms the exact estimator as far as finite-sample efficiency is concerned. We also present a new robust estimator for the MVE, closely related to the averaged <$>(p+1)<$>-subset estimator, but yielding a natural ranking of the data.  相似文献   

20.
Abstract. In the context of multivariate mean regression, we propose a new method to measure and estimate the inadequacy of a given parametric model. The measure is basically the missed fraction of variation after adjusting the best possible parametric model from a given family. The proposed approach is based on the minimum L 2 ‐distance between the true but unknown regression curve and a given model. The estimation method is based on local polynomial averaging of residuals with a polynomial degree that increases with the dimension d of the covariate. For any d ≥ 1 and under some weak assumptions we give a Bahadur‐type representation of the estimator from which ‐consistency and asymptotic normality are derived for strongly mixing variables. We report the outcomes of a simulation study that aims at checking the finite sample properties of these techniques. We present the analysis of a dataset on ultrasonic calibration for illustration.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号