首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到15条相似文献,搜索用时 15 毫秒
1.
We consider the stratified regression superpopulation model and obtain Bayes predictor of the finite population mean under Zellner's two-criterion balanced loss function (BLF). BLF predictor simplifies to a linear combination of the sample and predictive means. Furthermore, it reduces to some of the well-known classical and Bayes predictors. Relative losses and relative savings loss are obtained to investigate loss robustness of the BLF predictor. It is found to perform better than the usual sample mean as well as the predictive mean in the minimal Bayes predictive expected loss sense.  相似文献   

2.
In this article, we consider Bayes prediction in a finite population under the simple location error-in-variables superpopulation model. Bayes predictor of the finite population mean under Zellner's balanced loss function and the corresponding relative losses and relative savings loss are derived. The prior distribution of the unknown location parameter of the model is assumed to have a non-normal distribution belonging to the class of Edgeworth series distributions. Effects of non normality of the “true” prior distribution and that of a possible misspecification of the loss function on the Bayes predictor are illustrated for a hypothetical population.  相似文献   

3.
In this article, we obtained Bayes estimators of parameters of Inverse Gaussian distributions under asymmetric loss function using Lindley's Approximation (L-Approximation). The proposed estimators have been compared with the corresponding estimators obtained under symmetric loss function and MLE for their risks. This comparison is illustrated using Monte-Carlo study of 2,000 simulated sample from the Inverse Gaussian distribution.  相似文献   

4.
Appreciating the desirability of simultaneously using both the criteria of goodness of fitted model and clustering of estimates around true parameter values, an extended version of the balanced loss function is presented and the Bayesian estimation of regression coefficients is discussed. The thus obtained optimal estimator is then compared with the least squares estimator and posterior mean vector with respect to the criteria like posterior expected loss, Bayes risk, bias vector, mean squared error matrix and risk function.  相似文献   

5.
Consider the estimation problem for the multiple linear regression (MLR) setup, under the balanced loss function (BLF), where goodness of fit and precision of estimation are modeled using either squared error loss (SEL) or linear exponential (LINEX) loss functions. The authors derive the minimum risk estimates for two different variants of BLF and prove for both the cases the existence of the ubiquitous SEL and LINEX estimates at the boundary conditions. Conclusions draw from the exhaustive simulation runs prove the general nature of proposed theorems.  相似文献   

6.
Censored data arise naturally in a number of fields, particularly in problems of reliability and survival analysis. There are several types of censoring; in this article, we shall confine ourselves to the right randomly censoring type. Under the Bayesian framework, we study the estimation of parameters in a general framework based on the random censored observations under Linear-Exponential (LINEX) and squared error loss (SEL) functions. As a special case, Weibull model is discussed and the admissibility of estimators of parameters verified. Finally, a simulation study is conducted based on Monte Carlo (MC) method for comparing estimated risks of the estimators obtained.  相似文献   

7.
We obtain a Bayes predictor and a Bayes prediction risk of the mean of a finite population relative to the balanced loss function. The predictive expected losses associated with classical and standard Bayes predictors are derived and compared with that of a Bayes predictor under a balanced loss function. Specific expressions for a regular exponential family distributed superpopulation are presented and illustrated for some well-known superpopulations.  相似文献   

8.
We consider Khamis' (1960) Laguerre expansion with gamma weight function as a class of “near-gamma” priors (K-prior) to obtain the Bayes predictor of a finite population mean under the Poisson regression superpopulation model using Zellner's balanced loss function (BLF). Kullback–Leibler (K-L) distance between gamma and some K-priors is tabulated to examine the quantitative prior robustness. Some numerical investigations are also conducted to illustrate the effects of a change in skewness and/or kurtosis on the Bayes predictor and the corresponding minimal Bayes predictive expected loss (MBPEL). Loss robustness with respect to the class of BLFs is also examined in terms of relative savings loss (RSL).  相似文献   

9.
For the variance parameter of the hierarchical normal and inverse gamma model, we analytically calculate the Bayes rule (estimator) with respect to a prior distribution IG (alpha, beta) under Stein's loss function. This estimator minimizes the posterior expected Stein's loss (PESL). We also analytically calculate the Bayes rule and the PESL under the squared error loss. Finally, the numerical simulations exemplify that the PESLs depend only on alpha and the number of observations. The Bayes rules and PESLs under Stein's loss are unanimously smaller than those under the squared error loss.  相似文献   

10.
We investigate a Bayesian inference in the three-parameter bathtub-shaped lifetime distribution which is obtained by adding a power parameter to the two-parameter bathtub-shaped lifetime distribution suggested by Chen (2000). The Bayes estimators under the balanced squared error loss function are derived for three parameters. Then, we have used Lindley's and Tierney–Kadane approximations (see Lindley 1980; Tierney and Kadane 1986) for computing these Bayes estimators. In particular, we propose the explicit form of Lindley's approximation for the model with three parameters. We also give applications with a simulated data set and two real data sets to show the use of discussed computing methods. Finally, concluding remarks are mentioned.  相似文献   

11.
Abstract

For the restricted parameter space (0,1), we propose Zhang’s loss function which satisfies all the 7 properties for a good loss function on (0,1). We then calculate the Bayes rule (estimator), the posterior expectation, the integrated risk, and the Bayes risk of the parameter in (0,1) under Zhang’s loss function. We also calculate the usual Bayes estimator under the squared error loss function, and the Bayes estimator has been proved to underestimate the Bayes estimator under Zhang’s loss function. Finally, the numerical simulations and a real data example of some monthly magazine exposure data exemplify our theoretical studies of two size relationships about the Bayes estimators and the Posterior Expected Zhang’s Losses (PEZLs).  相似文献   

12.
Bayesian estimation for the two unknown parameters and the reliability function of the exponentiated Weibull model are obtained based on generalized order statistics. Markov chain Monte Carlo (MCMC) methods are considered to compute the Bayes estimates of the target parameters. Our computations are based on the balanced loss function which contains the symmetric and asymmetric loss functions as special cases. The results have been specialized to the progressively Type-II censored data and upper record values. Comparisons are made between Bayesian and maximum likelihood estimators via Monte Carlo simulation.  相似文献   

13.
In this paper, we consider the Bayesian inference of the unknown parameters of the randomly censored Weibull distribution. A joint conjugate prior on the model parameters does not exist; we assume that the parameters have independent gamma priors. Since closed-form expressions for the Bayes estimators cannot be obtained, we use Lindley's approximation, importance sampling and Gibbs sampling techniques to obtain the approximate Bayes estimates and the corresponding credible intervals. A simulation study is performed to observe the behaviour of the proposed estimators. A real data analysis is presented for illustrative purposes.  相似文献   

14.
15.
For the hierarchical Poisson and gamma model, we calculate the Bayes posterior estimator of the parameter of the Poisson distribution under Stein's loss function which penalizes gross overestimation and gross underestimation equally and the corresponding Posterior Expected Stein's Loss (PESL). We also obtain the Bayes posterior estimator of the parameter under the squared error loss and the corresponding PESL. Moreover, we obtain the empirical Bayes estimators of the parameter of the Poisson distribution with a conjugate gamma prior by two methods. In numerical simulations, we have illustrated: The two inequalities of the Bayes posterior estimators and the PESLs; the moment estimators and the Maximum Likelihood Estimators (MLEs) are consistent estimators of the hyperparameters; the goodness-of-fit of the model to the simulated data. The numerical results indicate that the MLEs are better than the moment estimators when estimating the hyperparameters. Finally, we exploit the attendance data on 314 high school juniors from two urban high schools to illustrate our theoretical studies.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号