首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
For a normal distribution with known variance, the standard confidence interval of the location parameter is derived from the classical Neyman procedure. When the parameter space is known to be restricted, the standard confidence interval is arguably unsatisfactory. Recent articles have addressed this problem and proposed confidence intervals for the mean of a normal distribution where the parameter space is not less than zero. In this article, we propose a new confidence interval, rp interval, and derive the Bayesian credible interval and likelihood ratio interval for general restricted parameter space. We compare these intervals with the standard interval and the minimax interval. Simulation studies are undertaken to assess the performances of these confidence intervals.  相似文献   

2.
Csenki(1980a) utilized the rate of convergence results of Landers and Rogge(1976b) for suitably normalized random means to obtain the rate of convergence of the coverage probability for Chow-Robbins'(1965) fixed-width confidence interval procedure. In this paper, we utilize the rate of convergence results of Ghosh and DasGupta(1980) for suitably normalized random U-statistics to derive the rate of convergence of the coverage probability for estimating the mean of a U-statistic through Sproule's(1969, 1974) procedure. We show that Csenki's(1980a) convergence rate can be achieved with a substantial economy on moment condition. We also propose a two-stage procedure for this pro-1970 AMS Classification: 60F05, 62L10, 62G10  相似文献   

3.
For surveys with sensitive questions, randomized response sampling strategies are often used to increase the response rate and encourage participants to provide the truth of the question while participants' privacy and confidentiality are protected. The proportion of responding ‘yes’ to the sensitive question is the parameter of interest. Asymptotic confidence intervals for this proportion are calculated from the limiting distribution of the test statistic, and are traditionally used in practice for statistical inference. It is well known that these intervals do not guarantee the coverage probability. For this reason, we apply the exact approach, adjusting the critical value as in [10 J. Frey and A. Pérez, Exact binomial confidence intervals for randomized response, Amer. Statist.66 (2012), pp. 815. Available at http://dx.doi.org/10.1080/00031305.2012.663680.[Taylor &; Francis Online], [Web of Science ®] [Google Scholar]], to construct the exact confidence interval of the proportion based on the likelihood ratio test and three Wilson-type tests. Two randomized response sampling strategies are studied: the Warner model and the unrelated model. The exact interval based on the likelihood ratio test has shorter average length than others when the probability of the sensitive question is low. Exact Wilson intervals have good performance in other cases. A real example from a survey study is utilized to illustrate the application of these exact intervals.  相似文献   

4.
The phase II clinical trials often use the binary outcome. Thus, accessing the success rate of the treatment is a primary objective for the phase II clinical trials. Reporting confidence intervals is a common practice for clinical trials. Due to the group sequence design and relatively small sample size, many existing confidence intervals for phase II trials are much conservative. In this paper, we propose a class of confidence intervals for binary outcomes. We also provide a general theory to assess the coverage of confidence intervals for discrete distributions, and hence make recommendations for choosing the parameter in calculating the confidence interval. The proposed method is applied to Simon's [14] optimal two-stage design with numerical studies. The proposed method can be viewed as an alternative approach for the confidence interval for discrete distributions in general.  相似文献   

5.
Hsiuying Wang 《Statistics》2013,47(2):327-343
Setting confidence bounds or intervals for a parameter in a restricted parameter space is an important issue in applications and is widely discussed in the recent literature. In this article, we focus on the distributions in the exponential families, and propose general forms of the truncated Pratt interval and rp interval for the means. We take the Poisson distribution as an example to illustrate the method and compare it with the other existing intervals. Besides possessing the merits from the theoretical inferences, the proposed intervals are also shown to be competitive approaches from simulation and real-data application studies.  相似文献   

6.
Abstract

The method of tail functions is applied to confidence estimation of the exponential mean in the presence of prior information. It is shown how the “ordinary” confidence interval can be generalized using a class of tail functions and then engineered for optimality, in the sense of minimizing prior expected length over that class, whilst preserving frequentist coverage. It is also shown how to derive the globally optimal interval, and how to improve on this using tail functions when criteria other than length are taken into consideration. Probabilities of false coverage are reported for some of the intervals under study, and the theory is illustrated by application to confidence estimation of a reliability coefficient based on some survival data.  相似文献   

7.
If the unknown mean of a univariate population is sufficiently close to the value of an initial guess then an appropriate shrinkage estimator has smaller average squared error than the sample mean. This principle has been known for some time, but it does not appear to have found extension to problems of interval estimation. The author presents valid two‐sided 95% and 99% “shrinkage” confidence intervals for the mean of a normal distribution. These intervals are narrower than the usual interval based on the Student distribution when the population mean lies in such an “effective interval.” A reduction of 20% in the mean width of the interval is possible when the population mean is sufficiently close to the value of the guess. The author also describes a modification to existing shrinkage point estimators of the general univariate mean that enables the effective interval to be enlarged.  相似文献   

8.
We investigate the exact coverage and expected length properties of the model averaged tail area (MATA) confidence interval proposed by Turek and Fletcher, CSDA, 2012, in the context of two nested, normal linear regression models. The simpler model is obtained by applying a single linear constraint on the regression parameter vector of the full model. For given length of response vector and nominal coverage of the MATA confidence interval, we consider all possible models of this type and all possible true parameter values, together with a wide class of design matrices and parameters of interest. Our results show that, while not ideal, MATA confidence intervals perform surprisingly well in our regression scenario, provided that we use the minimum weight within the class of weights that we consider on the simpler model.  相似文献   

9.
Guogen Shan 《Statistics》2018,52(5):1086-1095
In addition to point estimate for the probability of response in a two-stage design (e.g. Simon's two-stage design for binary endpoints), confidence limits should be computed and reported. The current method of inverting the p-value function to compute the confidence interval does not guarantee coverage probability in a two-stage setting. The existing exact approach to calculate one-sided limits is based on the overall number of responses to order the sample space. This approach could be conservative because many sample points have the same limits. We propose a new exact one-sided interval based on p-value for the sample space ordering. Exact intervals are computed by using binomial distributions directly, instead of a normal approximation. Both exact intervals preserve the nominal confidence level. The proposed exact interval based on the p-value generally performs better than the other exact interval with regard to expected length and simple average length of confidence intervals.  相似文献   

10.
11.
In this paper we consider and propose some confidence intervals for estimating the mean or difference of means of skewed populations. We extend the median t interval to the two sample problem. Further, we suggest using the bootstrap to find the critical points for use in the calculation of median t intervals. A simulation study has been made to compare the performance of the intervals and a real life example has been considered to illustrate the application of the methods.  相似文献   

12.
In all empirical or experimental sciences, it is a standard approach to present results, additionally to point estimates, in form of confidence intervals on the parameters of interest. The length of a confidence interval characterizes the accuracy of the whole findings. Consequently, confidence intervals should be constructed to hold a desired length. Basic ideas go back to Stein (1945) and Seelbinder (1953) who proposed a two-stage procedure for hypothesis testing about a normal mean. Tukey (1953) additionally considered the probability or power a confidence interval should possess to hold its length within a desired boundary. In this paper, an adaptive multi-stage approach is presented that can be considered as an extension of Stein's concept. Concrete rules for sample size updating are provided. Following an adaptive two-stage design of O’Brien and Fleming (1979) type, a real data example is worked out in detail.  相似文献   

13.
This paper discusses five methods for constructing approximate confidence intervals for the binomial parameter Θ, based on Y successes in n Bernoulli trials. In a recent paper, Chen (1990) discusses various approximate methods and suggests a new method based on a Bayes argument, which we call method I here. Methods II and III are based on the normal approximation without and with continuity correction. Method IV uses the Poisson approximation of the binomial distribution and then exploits the fact that the exact confidence limits for the parameter of the Poisson distribution can be found through the x2 distribution. The confidence limits of method IV are then provided by the Wilson-Hilferty approximation of the x2. Similarly, the exact confidence limits for the binomial parameter can be expressed through the F distribution. Method V approximates these limits through a suitable version of the Wilson-Hilferty approximation. We undertake a comparison of the five methods in respect to coverage probability and expected length. The results indicate that method V has an advantage over Chen's Bayes method as well as over the other three methods.  相似文献   

14.
We study Poisson confidence procedures that potentially lead to short confidence intervals, investigating the class of all minimal cardinality procedures. We consider how length minimization should be properly defined, and show that Casella and Robert's (1989) criterion for comparing Poisson confidence procedures leads to a contradiction. We provide an alternative criterion for comparing length performance, identify the unique length optimal minimal cardinality procedure by this criterion, and propose a modification that eliminates an important drawback it possesses. We focus on procedures whose coverage never falls below the nominal level and discuss the case in which the nominal level represents mean coverage.  相似文献   

15.
In this article we introduce an approximately unbiased estimator for the population coefficient of variation, τ, in a normal distribution. The accuracy of this estimator is examined by several criteria. Using this estimator and its variance, two approximate confidence intervals for τ are introduced. The performance of the new confidence intervals is compared to those obtained by current methods.  相似文献   

16.
The problem of selecting the normal population with the largest population mean when the populations have a common known variance is considered. A two-stage procedure is proposed which guarantees the same probability requirement using the indifference-zone approach as does the single-stage procedure of Bechhofer (1954). The two-stage procedure has the highly desirable property that the expected total number of observations required by the procedure is always less than the total number of observations required by the corresponding single-stage procedure, regardless of the configuration of the population means. The saving in expected total number of observations can be substantial, particularly when the configuration of the population means is favorable to the experimenter. The saving is accomplished by screening out “non-contending” populations in the first stage, and concentrating sampling only on “contending” populations in the second stage.

The two-stage procedure can be regarded as a composite one which uses a screening subset-type approach (Gupta (1956), (1965)) in the first stage, and an indifference-zone approach (Bechhofer (1954)) applied to all populations retained in the selected sub-set in the second stage. Constants to implement the procedure for various k and P? are provided, as are calculations giving the saving in expected total sample size if the two-stage procedure is used in place of the corresponding single-stage procedure.  相似文献   

17.
In this paper, we have reviewed and proposed several interval estimators for estimating the difference of means of two skewed populations. Estimators include the ordinary-t, two versions proposed by Welch [17] and Satterthwaite [15], three versions proposed by Zhou and Dinh [18], Johnson [9], Hall [8], empirical likelihood (EL), bootstrap version of EL, median t proposed by Baklizi and Kibria [2] and bootstrap version of median t. A Monte Carlo simulation study has been conducted to compare the performance of the proposed interval estimators. Some real life health related data have been considered to illustrate the application of the paper. Based on our findings, some possible good interval estimators for estimating the mean difference of two populations have been recommended for the researchers.  相似文献   

18.
We derive a computationally convenient formula for the large sample coverage probability of a confidence interval for a scalar parameter of interest following a preliminary hypothesis test that a specified vector parameter takes a given value in a general regression model. Previously, this large sample coverage probability could only be estimated by simulation. Our formula only requires the evaluation, by numerical integration, of either a double or a triple integral, irrespective of the dimension of this specified vector parameter. We illustrate the application of this formula to a confidence interval for the odds ratio of myocardial infarction when the exposure is recent oral contraceptive use, following a preliminary test where two specified interactions in a logistic regression model are zero. For this real‐life data, we compare this large sample coverage probability with the actual coverage probability of this confidence interval, obtained by simulation.  相似文献   

19.
Confidence interval is a basic type of interval estimation in statistics. When dealing with samples from a normal population with the unknown mean and the variance, the traditional method to construct t-based confidence intervals for the mean parameter is to treat the n sampled units as n groups and build the intervals. Here we propose a generalized method. We first divide them into several equal-sized groups and then calculate the confidence intervals with the mean values of these groups. If we define “better” in terms of the expected length of the confidence interval, then the first method is better because the expected length of the confidence interval obtained from the first method is shorter. We prove this intuition theoretically. We also specify when the elements in each group are correlated, the first method is invalid, while the second can give us correct results in terms of the coverage probability. We illustrate this with analytical expressions. In practice, when the data set is extremely large and distributed in several data centers, the second method is a good tool to get confidence intervals, in both independent and correlated cases. Some simulations and real data analyses are presented to verify our theoretical results.  相似文献   

20.
This article considers the construction of level 1?α fixed width 2d confidence intervals for a Bernoulli success probability p, assuming no prior knowledge about p and so p can be anywhere in the interval [0, 1]. It is shown that some fixed width 2d confidence intervals that combine sequential sampling of Hall [Asymptotic theory of triple sampling for sequential estimation of a mean, Ann. Stat. 9 (1981), pp. 1229–1238] and fixed-sample-size confidence intervals of Agresti and Coull [Approximate is better than ‘exact’ for interval estimation of binomial proportions, Am. Stat. 52 (1998), pp. 119–126], Wilson [Probable inference, the law of succession, and statistical inference, J. Am. Stat. Assoc. 22 (1927), pp. 209–212] and Brown et al. [Interval estimation for binomial proportion (with discussion), Stat. Sci. 16 (2001), pp. 101–133] have close to 1?α confidence level. These sequential confidence intervals require a much smaller sample size than a fixed-sample-size confidence interval. For the coin jamming example considered, a fixed-sample-size confidence interval requires a sample size of 9457, while a sequential confidence interval requires a sample size that rarely exceeds 2042.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号