共查询到20条相似文献,搜索用时 0 毫秒
1.
In this article, we propose a new estimator for the density of objects using line transect data. The proposed estimator combines the nonparametric kernel estimator with parametric detection function: the exponential or the half normal detection function to estimate the density of objects. The selection of the detection function depends on the testing of the shoulder condition assumption. If the shoulder condition is true then the half-normal detection function is introduced together with the kernel estimator. Otherwise, the negative exponential is combined with the kernel estimator. Under these assumptions, the proposed estimator is asymptotically unbiased and it is strongly consistent estimator for the density of objects using line transect data. The simulation results indicate that the proposed estimator is very successful in taking the advantage of the parametric detection function available. 相似文献
2.
Omar Eidous 《统计学通讯:理论与方法》2013,42(14):2366-2378
In this article, we introduce the nonparametric kernel method starting with half-normal detection function using line transect sampling. The new method improves bias from O(h 2), as the smoothing parameter h → 0, to O(h 3) and in some cases to O(h 4). Properties of the proposed estimator are derived and an expression for the asymptotic mean square error (AMSE) of the estimator is given. Minimization of the AMSE leads to an explicit formula for an optimal choice of the smoothing parameter. Small-sample properties of the estimator are investigated and compared with the traditional kernel estimator by using simulation technique. A numerical results show that improvements over the traditional kernel estimator often can be realized even when the true detection function is far from the half-normal detection function. 相似文献
3.
Omar Eidous 《统计学通讯:理论与方法》2014,43(1):1-12
This article develops a new model that combines between the histogram and plausible parametric detection function to estimate the population density (abundance) by using line transects technique. A parametric detection function is introduced to improve the properties of the classical histogram estimator. Asymptotic properties of the resulting estimator are derived and an expression for the asymptotic mean square error (AMSE) is given. A general formula for the optimal choice of the histogram bin width based on AMSE is derived. Moreover, other possible alternative procedures to select the bin width are suggested and studied via simulation technique. The results show the superiority of the proposed estimators over both the classical histogram and the usual kernel estimators in most reasonable cases. In addition, the simulation results indicate that the choice of a plausible detection function is less sensitive than the choice of a bin width on the performance of the proposed estimator. 相似文献
4.
Abstract. A two-step procedure based on the conditional likelihood is proposed to estimate the population size of a closed population using a semiparametric model for recapture studies. An asymptotic variance estimate and numerical results are presented. The method is applied to a bird banding dataset in Hong Kong. 相似文献
5.
The classical histogram method has already been applied in line transect sampling to estimate the parameter f(0), which in turns is used to estimate the population abundance D or the population size N. It is well know that the bias convergence rate for histogram estimator of f(0) is o(h2) as h → 0, under the shoulder condition assumption. If the shoulder condition is not true, then the bias convergence rate is only o(h). This paper proposed two new estimators for f(0), which can be considered as modifications of the classical histogram estimator. The first estimator is derived when the shoulder condition is assumed to be valid and it reduces the bias convergence rate from o(h2) to o(h3). The other one is constructed without using the shoulder condition assumption and it reduces the bias convergence rate from o(h) to o(h2). The asymptotic properties of the proposed estimators are derived and formulas for bin width are also given. The finite properties based on a real data set and an extensive simulation study demonstrated the potential practical use of the proposed estimators. 相似文献
6.
This article extends the linear stochastic frontier model proposed by Aigner, Lovell, and Schmidt to a semiparametric frontier model in which the functional form of the production frontier is unspecified and the distributions of the composite error terms are of known form. Pseudolikelihood estimators of the parameters characterizing the two error terms of the model are constructed based on kernel estimation of the conditional mean function. The Monte Carlo results show that the proposed estimators perform well in finite samples. An empirical application is presented. Extensions to a partially linear frontier function and to more flexible one-sided error distributions than the half-normal are discussed 相似文献
7.
半参数空间变系数回归模型的两步估计方法及其数值模拟 总被引:9,自引:0,他引:9
文章提出了关于半参数空间变系数回归模型的两步估计方法,该方法可得到模型中常值系数估计量的精确解析表达式,广泛的数值模拟表明所提出的估计方法对估计常值系数具有满意的精度和稳定性。 相似文献
8.
We propose a profile conditional likelihood approach to handle missing covariates in the general semiparametric transformation regression model. The method estimates the marginal survival function by the Kaplan-Meier estimator, and then estimates the parameters of the survival model and the covariate distribution from a conditional likelihood, substituting the Kaplan-Meier estimator for the marginal survival function in the conditional likelihood. This method is simpler than full maximum likelihood approaches, and yields consistent and asymptotically normally distributed estimator of the regression parameter when censoring is independent of the covariates. The estimator demonstrates very high relative efficiency in simulations. When compared with complete-case analysis, the proposed estimator can be more efficient when the missing data are missing completely at random and can correct bias when the missing data are missing at random. The potential application of the proposed method to the generalized probit model with missing continuous covariates is also outlined. 相似文献
9.
Wanrong LiuXuewen Lu Changchun Xie 《Journal of statistical planning and inference》2012,142(1):347-357
When responses are missing at random, we propose a semiparametric direct estimator for the missing probability and density-weighted average derivatives of a general nonparametric multiple regression function. An estimator for the normalized version of the weighted average derivatives is constructed as well using instrumental variables regression. The proposed estimators are computationally simple and asymptotically normal, and provide a solution to the problem of estimating index coefficients of single-index models with responses missing at random. The developed theory generalizes the method of the density-weighted average derivatives estimation of Powell et al. (1989) for the non-missing data case. Monte Carlo simulation studies are conducted to study the performance of the methods. 相似文献
10.
Circular data are observations that are represented as points on a unit circle. Times of day and directions of wind are two such examples. In this work, we present a Bayesian approach to regress a circular variable on a linear predictor. The regression coefficients are assumed to have a nonparametric distribution with a Dirichlet process prior. The semiparametric Bayesian approach gives added flexibility to the model and is useful especially when the likelihood surface is ill behaved. Markov chain Monte Carlo techniques are used to fit the proposed model and to generate predictions. The method is illustrated using an environmental data set. 相似文献
11.
This article is concerned with the problem of multicollinearity in the linear part of a seemingly unrelated semiparametric (SUS) model. It is also suspected that some additional non stochastic linear constraints hold on the whole parameter space. In the sequel, we propose semiparametric ridge and non ridge type estimators combining the restricted least squares methods in the model under study. For practical aspects, it is assumed that the covariance matrix of error terms is unknown and thus feasible estimators are proposed and their asymptotic distributional properties are derived. Also, necessary and sufficient conditions for the superiority of the ridge-type estimator over the non ridge type estimator for selecting the ridge parameter K are derived. Lastly, a Monte Carlo simulation study is conducted to estimate the parametric and nonparametric parts. In this regard, kernel smoothing and cross validation methods for estimating the nonparametric function are used. 相似文献
12.
MOULINATH BANERJEE PINAKI BISWAS DEBASHIS GHOSH 《Scandinavian Journal of Statistics》2006,33(4):673-697
Abstract. We study a binary regression model using the complementary log–log link, where the response variable Δ is the indicator of an event of interest (for example, the incidence of cancer, or the detection of a tumour) and the set of covariates can be partitioned as ( X , Z ) where Z (real valued) is the primary covariate and X (vector valued) denotes a set of control variables. The conditional probability of the event of interest is assumed to be monotonic in Z , for every fixed X . A finite-dimensional (regression) parameter β describes the effect of X . We show that the baseline conditional probability function (corresponding to X = 0 ) can be estimated by isotonic regression procedures and develop an asymptotically pivotal likelihood-ratio-based method for constructing (asymptotic) confidence sets for the regression function. We also show how likelihood-ratio-based confidence intervals for the regression parameter can be constructed using the chi-square distribution. An interesting connection to the Cox proportional hazards model under current status censoring emerges. We present simulation results to illustrate the theory and apply our results to a data set involving lung tumour incidence in mice. 相似文献
13.
In the context of ridge regression, the estimation of shrinkage parameter plays an important role in analyzing data. Many efforts have been put to develop the computation of risk function in different full-parametric ridge regression approaches using eigenvalues and then bringing an efficient estimator of shrinkage parameter based on them. In this respect, the estimation of shrinkage parameter is neglected for semiparametric regression model. Not restricted, but the main focus of this approach is to develop necessary tools for computing the risk function of regression coefficient based on the eigenvalues of design matrix in semiparametric regression. For this purpose the differencing methodology is applied. We also propose a new estimator for shrinkage parameter which is of harmonic type mean of ridge estimators. It is shown that this estimator performs better than all the existing ones for the regression coefficient. For our proposal, a Monte Carlo simulation study and a real dataset analysis related to housing attributes are conducted to illustrate the efficiency of shrinkage estimators based on the minimum risk and mean squared error criteria. 相似文献
14.
Abstract. This paper considers covariate selection for the additive hazards model. This model is particularly simple to study theoretically and its practical implementation has several major advantages to the similar methodology for the proportional hazards model. One complication compared with the proportional model is, however, that there is no simple likelihood to work with. We here study a least squares criterion with desirable properties and show how this criterion can be interpreted as a prediction error. Given this criterion, we define ridge and Lasso estimators as well as an adaptive Lasso and study their large sample properties for the situation where the number of covariates p is smaller than the number of observations. We also show that the adaptive Lasso has the oracle property. In many practical situations, it is more relevant to tackle the situation with large p compared with the number of observations. We do this by studying the properties of the so-called Dantzig selector in the setting of the additive risk model. Specifically, we establish a bound on how close the solution is to a true sparse signal in the case where the number of covariates is large. In a simulation study, we also compare the Dantzig and adaptive Lasso for a moderate to small number of covariates. The methods are applied to a breast cancer data set with gene expression recordings and to the primary biliary cirrhosis clinical data. 相似文献
15.
McKeague and Sasieni [A partly parametric additive risk model. Biometrika 81 (1994) 501] propose a restriction of Aalen’s additive risk model by the additional hypothesis that some of the covariates
have time-independent influence on the intensity of the observed counting process. We introduce goodness-of-fit tests for
this semiparametric Aalen model. The asymptotic distribution properties of the test statistics are derived by means of martingale
techniques. The tests can be adjusted to detect particular alternatives. As one of the most important alternatives we consider
Cox’s proportional hazards model. We present simulation studies and an application to a real data set. 相似文献
16.
17.
Motivated by the need to analyze the National Longitudinal Surveys data, we propose a new semiparametric longitudinal mean‐covariance model in which the effects on dependent variable of some explanatory variables are linear and others are non‐linear, while the within‐subject correlations are modelled by a non‐stationary autoregressive error structure. We develop an estimation machinery based on least squares technique by approximating non‐parametric functions via B‐spline expansions and establish the asymptotic normality of parametric estimators as well as the rate of convergence for the non‐parametric estimators. We further advocate a new model selection strategy in the varying‐coefficient model framework, for distinguishing whether a component is significant and subsequently whether it is linear or non‐linear. Besides, the proposed method can also be employed for identifying the true order of lagged terms consistently. Monte Carlo studies are conducted to examine the finite sample performance of our approach, and an application of real data is also illustrated. 相似文献
18.
Abstract. In this paper, we consider a semiparametric time-varying coefficients regression model where the influences of some covariates vary non-parametrically with time while the effects of the remaining covariates follow certain parametric functions of time. The weighted least squares type estimators for the unknown parameters of the parametric coefficient functions as well as the estimators for the non-parametric coefficient functions are developed. We show that the kernel smoothing that avoids modelling of the sampling times is asymptotically more efficient than a single nearest neighbour smoothing that depends on the estimation of the sampling model. The asymptotic optimal bandwidth is also derived. A hypothesis testing procedure is proposed to test whether some covariate effects follow certain parametric forms. Simulation studies are conducted to compare the finite sample performances of the kernel neighbourhood smoothing and the single nearest neighbour smoothing and to check the empirical sizes and powers of the proposed testing procedures. An application to a data set from an AIDS clinical trial study is provided for illustration. 相似文献
19.
Abstract. We propose and study a class of regression models, in which the mean function is specified parametrically as in the existing regression methods, but the residual distribution is modelled non-parametrically by a kernel estimator, without imposing any assumption on its distribution. This specification is different from the existing semiparametric regression models. The asymptotic properties of such likelihood and the maximum likelihood estimate (MLE) under this semiparametric model are studied. We show that under some regularity conditions, the MLE under this model is consistent (when compared with the possibly pseudo-consistency of the parameter estimation under the existing parametric regression model), is asymptotically normal with rate and efficient. The non-parametric pseudo-likelihood ratio has the Wilks property as the true likelihood ratio does. Simulated examples are presented to evaluate the accuracy of the proposed semiparametric MLE method. 相似文献
20.
Pao-Sheng Shen 《统计学通讯:理论与方法》2013,42(1):128-137
Consider the model φ(S(y | X)) = β(y) T X, where φ is a known link function, S(· | X) is the survival function of a response Y given a covariate X = (1, X, X 2,…, X p ), and β(y) is an unknown vector of time-dependent regression coefficients. The response Y is subject to left truncation and right censoring. We assume that given X, Y is independent of (C, T) where C and T are censoring and truncation variables with P(C ≥ T) = 1. In this article, with some modification of the assumptions in Lemmas 5 and 6 of Iglesias-Pérez and González-Manteiga (1999), we present an almost sure representation for the generalized product-limit estimator (GPL) of S(y | X). Based on the GPL and the approach of Teodorescu et al. (2010), a least squares estimator of β(y) is obtained and a bootstrap procedure is proposed to choose the optimum bandwidth. 相似文献