首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
In this study, we define the Horvitz-Thompson estimator of the population mean using the inclusion probabilities of a ranked set sample in a finite population setting. The second-order inclusion probabilities that are required to calculate the variance of the Horvitz-Thompson estimator were obtained. The Horvitz-Thompson estimator, using the inclusion probabilities of ranked set sample, tends to be more efficient than the classical ranked set sampling estimator especially in a positively skewed population with small sizes. Also, we present a real data example with the volatility of gasoline to illustrate the Horvitz-Thompson estimator based on ranked set sampling.  相似文献   

2.
In this paper, a new sampling method is suggested, namely truncation-based ranked set samples (TBRSS) for estimating the population mean and median. The suggested method is compared with the simple random sampling (SRS), ranked set sampling (RSS), extreme ranked set sampling (ERSS) and median-ranked set sampling (MRSS) methods. It is shown that for estimating the population mean when the underlying distribution is symmetric, TBRSS estimator is unbiased and it is more efficient than the SRS estimator based on the same number of measured units. For asymmetric distributions considered in this study, TBRSS estimator is more efficient than the SRS for all considered distributions except for exponential distribution when the selection coefficient gets large. When compared with ERSS and MRSS methods, TBRSS performs well with respect to ERSS for all considered distributions except for U(0, 1) distribution, while TBRSS efficiency is higher than that of MRSS for U(0, 1) distribution. For estimating the population median, the TBRSS estimators have higher efficiencies when compared with SRS and ERSS. A real data set is used to illustrate the suggested method.  相似文献   

3.
Poisson sampling is a method for unequal probabilities sampling with random sample size. There exist several implementations of the Poisson sampling design, with fixed sample size, which almost all are rejective methods, that is, the sample is not always accepted. Thus, the existing methods can be time-consuming or even infeasible in some situations. In this paper, a fast and non-rejective method, which is efficient even for large populations, is proposed and studied. The method is a new design for selecting a sample of fixed size with unequal inclusion probabilities. For the population of large size, the proposed design is very close to the strict πps sampling which is similar to the conditional Poisson (CP) sampling design, but the implementation of the design is much more efficient than the CP sampling. And the inclusion probabilities can be calculated recursively.  相似文献   

4.
Recursive computation of inclusion probabilities in ranked-set sampling   总被引:1,自引:0,他引:1  
We derive recursive algorithms for computing first-order and second-order inclusion probabilities for ranked-set sampling from a finite population. These algorithms make it practical to compute inclusion probabilities even for relatively large sample and population sizes. As an application, we use the inclusion probabilities to examine the performance of Horvitz-Thompson estimators under different varieties of balanced ranked-set sampling. We find that it is only for balanced Level 2 sampling that the Horvitz-Thompson estimator can be relied upon to outperform the simple random sampling mean estimator.  相似文献   

5.
Abstract.  Pareto sampling was introduced by Rosén in the late 1990s. It is a simple method to get a fixed size π ps sample though with inclusion probabilities only approximately as desired. Sampford sampling, introduced by Sampford in 1967, gives the desired inclusion probabilities but it may take time to generate a sample. Using probability functions and Laplace approximations, we show that from a probabilistic point of view these two designs are very close to each other and asymptotically identical. A Sampford sample can rapidly be generated in all situations by letting a Pareto sample pass an acceptance–rejection filter. A new very efficient method to generate conditional Poisson ( CP ) samples appears as a byproduct. Further, it is shown how the inclusion probabilities of all orders for the Pareto design can be calculated from those of the CP design. A new explicit very accurate approximation of the second-order inclusion probabilities, valid for several designs, is presented and applied to get single sum type variance estimates of the Horvitz–Thompson estimator.  相似文献   

6.
Abstract.  A flexible list sequential π ps sampling method is introduced and studied. It can reproduce any given sampling design without replacement, of fixed or random sample size. The method is a splitting method and uses successive updating of inclusion probabilities. The main advantage of the method is in real-time sampling situations where it can be used as a powerful alternative to Bernoulli and Poisson sampling and can give any desired second-order inclusion probabilities and thus considerably reduce the variability of the sample size.  相似文献   

7.
Control charts are the most important statistical process control tool for monitoring variations in a process. A number of articles are available in the literature for the X? control chart based on simple random sampling, ranked set sampling, median-ranked set sampling (MRSS), extreme-ranked set sampling, double-ranked set sampling, double median-ranked set sampling and median double-ranked set sampling. In this study, we highlight some limitations of the existing ranked set charting structures. Besides, we propose different runs rules-based control charting structures under a variety of sampling strategies. We evaluate the performance of the control charting structures using power curves as a performance criterion. We observe that the proposed merger of varying runs rules schemes with different sampling strategies improve significantly the detection ability of location control charting structures. More specifically, the MRSS performs the best under both single- and double-ranked set strategies with varying runs rules schemes. We also include a real-life example to explain the proposal and highlight its significance for practical data sets.  相似文献   

8.
Order sampling with fixed distribution shape is a class of sampling schemes with inclusion probabilities approximately proportional to given size measures. In a recent article, methods were provided to compute the exact first and second order inclusion probabilities numerically when the distribution shape is of the Pareto type. In the same article, procedures were also provided for this case to adjust the parameters to get predetermined inclusion probabilities. In this paper we prove the existence and uniqueness of a solution for the latter problem, in general for any order sampling of fixed distribution shape.  相似文献   

9.
Abstract. Methods to perform fixed size sampling with prescribed second‐order inclusion probabilities are presented. The focus is on a conditional Poisson design of order 2, a CP(2) design. It is an exponential design of quadratic type and it is carefully studied. In particular, methods to find the suitable values of the parameters and methods to sample are described. Small examples illustrate.  相似文献   

10.
In real-time sampling, the units of a population pass a sampler one by one. Alternatively the sampler may successively visit the units of the population. Each unit passes only once and at that time it is decided whether or not it should be included in the sample. The goal is to take a sample and efficiently estimate a population parameter. The list sequential sampling method presented here is called correlated Poisson sampling. The method is an alternative to Poisson sampling, where the units are sampled independently with given inclusion probabilities. Correlated Poisson sampling uses weights to create correlations between the inclusion indicators. In that way it is possible to reduce the variation of the sample size and to make the samples more evenly spread over the population. Simulation shows that correlated Poisson sampling improves the efficiency in many cases.  相似文献   

11.
In this paper, we focus on Pitman closeness probabilities when the estimators are symmetrically distributed about the unknown parameter θ. We first consider two symmetric estimators θ?1 and θ?2 and obtain necessary and sufficient conditions for θ?1 to be Pitman closer to the common median θ than θ?2. We then establish some properties in the context of estimation under the Pitman closeness criterion. We define Pitman closeness probability which measures the frequency with which an individual order statistic is Pitman closer to θ than some symmetric estimator. We show that, for symmetric populations, the sample median is Pitman closer to the population median than any other independent and symmetrically distributed estimator of θ. Finally, we discuss the use of Pitman closeness probabilities in the determination of an optimal ranked set sampling scheme (denoted by RSS) for the estimation of the population median when the underlying distribution is symmetric. We show that the best RSS scheme from symmetric populations in the sense of Pitman closeness is the median and randomized median RSS for the cases of odd and even sample sizes, respectively.  相似文献   

12.
When auxiliary information is available at the design stage, samples may be selected by means of balanced sampling. The variance of the Horvitz-Thompson estimator is then reduced, since it is approximately given by that of the residuals of the variable of interest on the balancing variables. In this paper, a method for computing optimal inclusion probabilities for balanced sampling on given auxiliary variables is studied. We show that the method formerly suggested by Tillé and Favre (2005) enables the computation of inclusion probabilities that lead to a decrease in variance under some conditions on the set of balancing variables. A disadvantage is that the target optimal inclusion probabilities depend on the variable of interest. If the needed quantities are unknown at the design stage, we propose to use estimates instead (e.g., arising from a previous wave of the survey). A limited simulation study suggests that, under some conditions, our method performs better than the method of Tillé and Favre (2005).  相似文献   

13.
The author's 1963 procedure for selecting two units per stratum πpswor is generalized to any feasible fixed number of sample units. Simple closed expressions are given for the working probabilities at each draw but the formula for the joint probabilities of inclusion of pairs of units is recursive and tedious to apply. The stability of the variance estimator is believed to be close to the optimum that can be obtained using the Horvitz-Thompson estimator of total in situations where that estimator itself is optimal. Some suggestions are made for rotation of the sample.  相似文献   

14.
In this article, we develop nonparametric prediction intervals based on generalized ranked set samples using conditional as well as unconditional approaches. The predictions are developed for order statistics from a future sample as well as for order statistics from a future balanced ranked set sample. The effects of ranking errors on the coverage probabilities of these prediction intervals are also examined.  相似文献   

15.
Analysts of survey data are often interested in modelling the population process, or superpopulation, that gave rise to a 'target' set of survey variables. An important tool for this is maximum likelihood estimation. A survey is said to provide limited information for such inference if data used in the design of the survey are unavailable to the analyst. In this circumstance, sample inclusion probabilities, which are typically available, provide information which needs to be incorporated into the analysis. We consider the case where these inclusion probabilities can be modelled in terms of a linear combination of the design and target variables, and only sample values of these are available. Strict maximum likelihood estimation of the underlying superpopulation means of these variables appears to be analytically impossible in this case, but an analysis based on approximations to the inclusion probabilities leads to a simple estimator which is a close approximation to the maximum likelihood estimator. In a simulation study, this estimator outperformed several other estimators that are based on approaches suggested in the sampling literature.  相似文献   

16.
Abstract. Sampford's unequal probability sampling method is extended to the case that the inclusion probabilities do not sum to an integer. In this case, the sampling outcome is left open for exactly one randomly chosen unit and that unit gets a new inclusion probability. Three applications are presented. Two of them challenge traditional sampling routines. The simple Pareto sampling design, which was introduced by Rosén in 1997, is also extended. The extended Pareto design is shown to be close to the extended Sampford design.  相似文献   

17.
It is the main purpose of this paper to study the asymptotics of certain variants of the empirical process in the context of survey data. Precisely, Functional Central Limit Theorems are established under usual conditions when the sample is drawn from a Poisson or a rejective sampling design. The framework we develop encompasses sampling designs with non‐uniform first order inclusion probabilities, which can be chosen so as to optimize estimation accuracy. Applications to Hadamard differentiable functionals are considered.  相似文献   

18.
Modeling survey data often requires having the knowledge of design and weighting variables. With public-use survey data, some of these variables may not be available for confidentiality reasons. The proposed approach can be used in this situation, as long as calibrated weights and variables specifying the strata and primary sampling units are available. It gives consistent point estimation and a pivotal statistics for testing and confidence intervals. The proposed approach does not rely on with-replacement sampling, single-stage, negligible sampling fractions, or noninformative sampling. Adjustments based on design effects, eigenvalues, joint-inclusion probabilities or bootstrap, are not needed. The inclusion probabilities and auxiliary variables do not have to be known. Multistage designs with unequal selection of primary sampling units are considered. Nonresponse can be easily accommodated if the calibrated weights include reweighting adjustment for nonresponse. We use an unconditional approach, where the variables and sample are random variables. The design can be informative.  相似文献   

19.
《统计学通讯:理论与方法》2012,41(16-17):3278-3300
Under complex survey sampling, in particular when selection probabilities depend on the response variable (informative sampling), the sample and population distributions are different, possibly resulting in selection bias. This article is concerned with this problem by fitting two statistical models, namely: the variance components model (a two-stage model) and the fixed effects model (a single-stage model) for one-way analysis of variance, under complex survey design, for example, two-stage sampling, stratification, and unequal probability of selection, etc. Classical theory underlying the use of the two-stage model involves simple random sampling for each of the two stages. In such cases the model in the sample, after sample selection, is the same as model for the population; before sample selection. When the selection probabilities are related to the values of the response variable, standard estimates of the population model parameters may be severely biased, leading possibly to false inference. The idea behind the approach is to extract the model holding for the sample data as a function of the model in the population and of the first order inclusion probabilities. And then fit the sample model, using analysis of variance, maximum likelihood, and pseudo maximum likelihood methods of estimation. The main feature of the proposed techniques is related to their behavior in terms of the informativeness parameter. We also show that the use of the population model that ignores the informative sampling design, yields biased model fitting.  相似文献   

20.
Ranked set sampling (RSS) is an advanced sampling method which is very effective for estimating mean of the population when exact measurement of observation is difficult and/or expensive. Balanced Groups RSS (BGRSS) is one of the modification of RSS where only the lowest, the median and the largest ranked units are taken into account. Although BGRSS is advantageous and useful for some specific cases, it has strict restrictions regarding the set size which could be problematic for sampling plans. In this study, we make an improvement on BGRSS and propose a new design called Partial Groups RSS which offers a more flexible sampling plan providing the independence of the set size and sample size. Partial Groups RSS also has a cost advantage over BGRSS. We construct a Monte Carlo simulation study comparing the performance of the mean estimators of the proposed sampling design and BGRSS according to their sampling costs and mean squared errors for various type of distributions. In addition, we give a biometric data application for investigating the efficiency of Partial Groups RSS in real life applications.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号