共查询到20条相似文献,搜索用时 15 毫秒
1.
Two methods of estimation for the parameters of an AR(1) process which are based on a non-linear least-squares approach are presented. On the basis of some simulation results they are compared with two maximum likelihood estimates and their relative merits are discussed. 相似文献
2.
This paper compares methods of estimation for the parameters of a Pareto distribution of the first kind to determine which method provides the better estimates when the observations are censored, The unweighted least squares (LS) and the maximum likelihood estimates (MLE) are presented for both censored and uncensored data. The MLE's are obtained using two methods, In the first, called the ML method, it is shown that log-likelihood is maximized when the scale parameter is the minimum sample value. In the second method, called the modified ML (MML) method, the estimates are found by utilizing the maximum likelihood value of the shape parameter in terms of the scale parameter and the equation for the mean of the first order statistic as a function of both parameters. Since censored data often occur in applications, we study two types of censoring for their effects on the methods of estimation: Type II censoring and multiple random censoring. In this study we consider different sample sizes and several values of the true shape and scale parameters. Comparisons are made in terms of bias and the mean squared error of the estimates. We propose that the LS method be generally preferred over the ML and MML methods for estimating the Pareto parameter γ for all sample sizes, all values of the parameter and for both complete and censored samples. In many cases, however, the ML estimates are comparable in their efficiency, so that either estimator can effectively be used. For estimating the parameter α, the LS method is also generally preferred for smaller values of the parameter (α ≤4). For the larger values of the parameter, and for censored samples, the MML method appears superior to the other methods with a slight advantage over the LS method. For larger values of the parameter α, for censored samples and all methods, underestimation can be a problem. 相似文献
3.
Results of an exhaustive study of the bias of the least square estimator (LSE) of an first order autoregression coefficient α in a contaminated Gaussian model are presented. The model describes the following situation. The process is defined as Xt = α Xt-1 + Yt . Until a specified time T, Yt are iid normal N(0, 1). At the moment T we start our observations and since then the distribution of Yt, t≥T, is a Tukey mixture T(εσ) = (1 – ε)N(0,1) + εN(0, σ2). Bias of LSE as a function of α and ε, and σ2 is considered. A rather unexpected fact is revealed: given α and ε, the bias does not change montonically with σ (“the magnitude of the contaminant”), and similarly, given α and σ, the bias is not growing with ε (“the amount of contaminants”). 相似文献
4.
《Journal of Statistical Computation and Simulation》2012,82(3):207-216
In this article, the least squares (LS) estimates of the parameters of periodic autoregressive (PAR) models are investigated for various distributions of error terms via Monte-Carlo simulation. Beside the Gaussian distribution, this study covers the exponential, gamma, student-t, and Cauchy distributions. The estimates are compared for various distributions via bias and MSE criterion. The effect of other factors are also examined as the non-constancy of model orders, the non-constancy of the variances of seasonal white noise, the period length, and the length of the time series. The simulation results indicate that this method is in general robust for the estimation of AR parameters with respect to the distribution of error terms and other factors. However, the estimates of those parameters were, in some cases, noticeably poor for Cauchy distribution. It is also noticed that the variances of estimates of white noise variances are highly affected by the degree of skewness of the distribution of error terms. 相似文献
5.
This note is concerned with the limiting properties of the least squares estimation for the random coefficient autoregressive model. In contrast with existing results, ours is applicable to a wide range of models under more general assumptions. 相似文献
6.
Dulce Gomes Luísa Canto e Castro 《Journal of statistical planning and inference》2009,139(12):4088-4097
A random coefficient autoregressive process for count data based on a generalized thinning operator is presented. Existence and weak stationarity conditions for these models are established. For the particular case of the (generalized) binomial thinning, it is proved that the necessary and sufficient conditions for weak stationarity are the same as those for continuous-valued AR(1) processes. These kinds of processes are appropriate for modelling non-linear integer-valued time series. They allow for over-dispersion and are appropriate when including covariates. Model parameters estimators are calculated and their properties studied analytically and/or through simulation. 相似文献
7.
Yasumasa Matsuda 《统计学通讯:理论与方法》2013,42(9):2257-2273
In this paper, functional coefficient autoregressive (FAR) models proposed by Chen and Tsay (1993) are considered. We propose a diagnostic statistic for FAR models constructed by comparing between parametric and nonparametric estimators of the functional form of the FAR models. We show asymptotic properties of our statistic mathematically and it can be applied to the estimation of the delay parameter and the specification of the functional form of FAR models. 相似文献
8.
Parameter estimates of a new distribution for the strength of brittle fibers and composite materials are considered. An algorithm for generating random numbers from the distribution is suggested. Two parameter estimation methods, one based on a simple least squares procedure and the other based on the maximum likelihood principle, are studied using Monte Carlo simulation. In most cases, the maximum likelihood estimators were found to have somewhat smaller root mean squared error and bias than the least squares estimators. However, the least squares estimates are generally good and provide useful initial values for the numerical iteration used to find the maximum likelihood estimates. 相似文献
9.
For a Gaussian stationary process with mean μ and autocovariance function γ(·), we consider to improve the usual sample autocovariances with respect to the mean squares error (MSE) loss. For the cases μ=0 and μ≠0, we propose sort of empirical Bayes type estimators Γ? and Γ?, respectively. Then their MSE improvements upon the usual sample autocovariances are evaluated in terms of the spectral density of the process. Concrete examples for them are provided. We observe that if the process is near to a unit root process the improvement becomes quite large. Thus, consideration for estimators of this type seems important in many fields, e.g., econometrics. 相似文献
10.
《Journal of Statistical Computation and Simulation》2012,82(14):2936-2952
This paper is concerned with obtaining more accurate point forecasts in the presence of non-normal errors. Specifically, we apply the residual augmented least-squares (RALS) estimator to autoregressive models to utilize the additional moment restrictions embodied in non-normal errors. Monte Carlo experiments are performed to compare our RALS forecasts to forecasts based on the ordinary least-squares estimator and the least absolute deviations (LAD) estimator. We find that the RALS approach provides superior forecasts when the data are skewed. Compared to the LAD forecast, the RALS forecast has smaller mean squared prediction errors in the baseline case with normal errors. 相似文献
11.
In the multiple linear regression analysis, the ridge regression estimator and the Liu estimator are often used to address multicollinearity. Besides multicollinearity, outliers are also a problem in the multiple linear regression analysis. We propose new biased estimators based on the least trimmed squares (LTS) ridge estimator and the LTS Liu estimator in the case of the presence of both outliers and multicollinearity. For this purpose, a simulation study is conducted in order to see the difference between the robust ridge estimator and the robust Liu estimator in terms of their effectiveness; the mean square error. In our simulations, the behavior of the new biased estimators is examined for types of outliers: X-space outlier, Y-space outlier, and X-and Y-space outlier. The results for a number of different illustrative cases are presented. This paper also provides the results for the robust ridge regression and robust Liu estimators based on a real-life data set combining the problem of multicollinearity and outliers. 相似文献
12.
Vassili Blandin 《Statistics》2013,47(6):1202-1232
The purpose of this paper is to study the asymptotic behaviour of the weighted least-squares estimators of the unknown parameters of random coefficient bifurcating autoregressive processes. Under suitable assumptions on the immigration and the inheritance, we establish the almost sure convergence of our estimators, as well as a quadratic strong law and central limit theorems. Our study mostly relies on limit theorems for vector-valued martingales. 相似文献
13.
M. M. Saber 《统计学通讯:理论与方法》2017,46(18):9230-9246
Three linear prediction methods of a single missing value for a stationary first order multiplicative spatial autoregressive model are proposed based on the quarter observations, observations in the first neighborhood, and observations in the nearest neighborhood. Three different types of innovations including Gaussian (symmetric and thin tailed), exponential (skew to right), and asymmetric Laplace (skew and heavy tailed) are considered. In each case, the proposed predictors are compared based on the two well-known criteria: mean square prediction and Pitman's measure of closeness. Parameter estimation is performed by maximum likelihood, least square errors, and Markov chain Monte Carlo (MCMC). 相似文献
14.
《Journal of Statistical Computation and Simulation》2012,82(5):503-512
In this paper, we study the robust estimation for the order of hidden Markov model (HMM) based on a penalized minimum density power divergence estimator, which is obtained by utilizing the finite mixture marginal distribution of HMM. For this task, we adopt the locally conic parametrization method used in [D. Dacunha-Castelle and E. Gassiate, Testing in locally conic models and application to mixture models. ESAIM Probab. Stat. (1997), pp. 285–317; D. Dacunha-Castelle and E. Gassiate, Testing the order of a model using locally conic parametrization: population mixtures and stationary arma processes, Ann. Statist. 27 (1999), pp. 1178–1209; T. Lee and S. Lee, Robust and consistent estimation of the order of finite mixture models based on the minimizing a density power divergence estimator, Metrika 68 (2008), pp. 365–390] to avoid the difficulties that arise in handling mixture marginal models, such as the non-identifiability of the parameter space and the singularity problem with the asymptotic variance. We verify that the estimated order is consistent and simulation results are provided for illustration. 相似文献
15.
Byungsoo Kim 《Journal of Statistical Computation and Simulation》2017,87(15):2981-2996
In this study, we consider a robust estimation for zero-inflated Poisson autoregressive models using the minimum density power divergence estimator designed by Basu et al. [Robust and efficient estimation by minimising a density power divergence. Biometrika. 1998;85:549–559]. We show that under some regularity conditions, the proposed estimator is strongly consistent and asymptotically normal. The performance of the estimator is evaluated through Monte Carlo simulations. A real data analysis using New South Wales crime data is also provided for illustration. 相似文献
16.
Nityananda Sarkar 《统计学通讯:理论与方法》2013,42(7):1987-2000
It is well-known in the literature on multicollinearity that one of the major consequences of multicollinearity on the ordinary least squares estimator is that the estimator produces large sampling variances, which in turn might inappropriately lead to exclusion of otherwise significant coefficients from the model. To circumvent this problem, two accepted estimation procedures which are often suggested are the restricted least squares method and the ridge regression method. While the former leads to a reduction in the sampling variance of the estimator, the later ensures a smaller mean square error value for the estimator. In this paper we have proposed a new estimator which is based on a criterion that combines the ideas underlying these two estimators. The standard properties of this new estimator have been studied in the paper. It has also been shown that this estimator is superior to both the restricted least squares as well as the ordinary ridge regression estimators by the criterion of mean sauare error of the estimator of the regression coefficients when the restrictions are indeed correct. The conditions for superiority of this estimator over the other two have also been derived for the situation when the restrictions are not correct. 相似文献
17.
Equivalent conditions are derived for the equality of GLSE (generalized least squares estimator) and partially GLSE (PGLSE), the latter introduced by Amemiya (1983). By adopting a more general approach the ordinary least squares estimator (OLSE) can shown to be a special PGLSE. Furthcrmore, linearly restricted estimators proposed by Balestra (1983) are investigated in this context. To facilitate the comparison of estimators extensive use of oblique and orthogonal projectors is made. 相似文献
18.
In this paper, we consider the estimation of the probability density function and the cumulative distribution function of the inverse Rayleigh distribution. In this regard, the following estimators are considered: uniformly minimum variance unbiased estimator, maximum likelihood (ML) estimator, percentile estimator, least squares estimator and weighted least squares estimator. To do so, analytical expressions are derived for the mean integrated squared error. As the result of simulation studies and real data applications indicate, when the sample size is not very small the ML estimator performs better than the others. 相似文献
19.
Jan Serroyen Marc Aerts Ellen Vloeberghs Peter Paul De Deyn Geert Verbeke 《Journal of applied statistics》2010,37(5):833-846
In the conventional linear mixed-effects model, four structures can be distinguished: fixed effects, random effects, measurement error and serial correlation. The latter captures the phenomenon that the correlation structure within a subject depends on the time lag between two measurements. While the general linear mixed model is rather flexible, the need has arisen to further increase flexibility. In addition to work done in the area, we propose the use of spline-based modeling of the serial correlation function, so as to allow for additional flexibility. This approach is applied to data from a pre-clinical experiment in dementia which studied the eating and drinking behavior in mice. 相似文献
20.
In this paper, a new estimator combined estimator (CE) is proposed for estimating the finite population mean ¯ Y N in simple random sampling assuming a long-tailed symmetric super-population model. The efficiency and robustness properties of the CE is compared with the widely used and well-known estimators of the finite population mean ¯ Y N by Monte Carlo simulation. The parameter estimators considered in this study are the classical least squares estimator, trimmed mean, winsorized mean, trimmed L-mean, modified maximum-likelihood estimator, Huber estimator (W24) and the non-parametric Hodges–Lehmann estimator. The mean square error criteria are used to compare the performance of the estimators. We show that the CE is overall more efficient than the other estimators. The CE is also shown to be more robust for estimating the finite population mean ¯ Y N , since it is insensitive to outliers and to misspecification of the distribution. We give a real life example. 相似文献